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Abstract

Access to external knowledge is essential for many natural language processing
tasks, such as question answering and dialogue. Existing methods often rely on
a parametric model that stores knowledge in its parameters, or use a retrieval-
augmented model that has access to an external knowledge source. Parametric
and retrieval-augmented models have complementary strengths in terms of com-
putational efficiency and predictive accuracy. To combine the strength of both
approaches, we propose the Efficient Memory-Augmented Transformer (EMAT)
– it encodes external knowledge into a key-value memory and exploits the fast
maximum inner product search for memory querying. Experiments on various
knowledge-intensive tasks such as question answering and dialogue datasets show
that, simply augmenting parametric models (T5-base) using our method produces
more accurate results while retaining a high throughput. Compared to retrieval-
augmented models, EMAT runs substantially faster across the board and produces
more accurate results on WoW and ELI5.

1 Introduction

NLP tasks often require knowledge that is not explicitly provided with the input. For example,
Open-Domain Question Answering (ODQA) requires answering an open-domain question without
given context passages [Chen et al., 2017]. To handle such tasks, one key challenge is storing
and accessing potentially large amounts of knowledge. One approach is a parametric method that
trains a sequence-to-sequence generator to represent knowledge within model parameters. Petroni
et al. [2019] find that Pre-trained Language Models (PLMs) learn a partial knowledge base in their
parameters, but its coverage is limited. Increasing model size can alleviate this issue [Raffel et al.,
2020, Roberts et al., 2020, Brown et al., 2020]; however, larger language models require significant
computational resources.

Retrieval-augmented models [Guu et al., 2020, Lewis et al., 2020b, Izacard and Grave, 2021, Das
et al., 2022], on the other hand, retrieve relevant passages from an external knowledge source, and
use the retrieved passages to inform generation. Despite being more accurate, retrieval-augmented
models are often significantly more costly computation-wise than their parametric counterparts, since
they require retrieving, encoding, and integrating the external knowledge at inference time.

To combine the strengths of both parametric and retrieval-augmented models, we propose Efficient
Memory-Augmented Transformers (EMATs) – an extension to Transformer-based models augmented
with an efficient key-value memory module. EMAT first encodes the external knowledge source into
key embeddings and value embeddings, to construct the key-value memory (Section 2). We choose
PAQ [Lewis et al., 2021b], the largest collection of question-answer pairs currently available, as our
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Figure 1: Architecture of the proposed EMAT. Left: during pre-training phase, EMAT learns to represent
questions and answers as key and value vectors respectively (see Section 3), which will then form the key-value
memory. Right: factual knowledge is stored in a key-value memory (Section 2); the model learns to retrieve
from the memory, incorporate them into the model, and exploit them to inform the generation process.

knowledge source; and we encode the questions as keys and answers as values. The transformer
model produces dense query vector, retrieves from the key-value memory (Section 2), and integrates
the returned dense key-value vectors at different encoder layers to enhance generation (Section 2).
Different from previous approaches [Lample et al., 2019, Fan et al., 2021, Chen et al., 2022], our query
representation is computed at an early transformer layer, whereas retrieved key and value embeddings
are incorporated into the model at a later layer. This design only requires one forward pass through
the transformer model, and allows memory retrieval to run concurrently with forwarding of the
Transformer layers, and hence reduces the computational overhead (see Fig. 1 for our architecture).

With this architecture, it is also important that the key-value memory accurately represent the
knowledge source, and the Transformer model learns a strategy to incorporate the retrieved key-value
representations into the model. We describe our pre-training objectives in Section 3.

2 Efficient Memory-Augmented Transformer

In this work we propose Efficient Memory-Augmented Transformer (EMAT) that uses a key-value
memory to store millions of dense question-answer representations to inform its predictions (see
Fig. 1). Given an input sequence X , EMAT’s encoder first produces a dense query q to retrieve from
the memory M. The returned key-value representations corresponding to the retrieved k key-value
pairs are labelled as Z. Finally, the decoder generates the target sequence Y conditioned on X and Z.

Key-Value Memory The key-value memory M = (K,V) contains representations of keys K
and values V, with each key ki mapping to one value vi. We choose PAQ [Lewis et al., 2021b],
the largest collection of QA pairs publicly available, as our knowledge source. Hence, each key
represents a question, and its value represents the corresponding answer. We use EMAT’s encoder
to encode the question and the answer separately, and it produces key and value embeddings from
lk-th and lv-th layer of encoder respectively, as shown in Fig. 1 To encode the key embeddings, we
first concatenate a prefix PREFIX of length P with the question q as input, and then obtain the hidden
states at the lk-th layer hlk = [hlk

1 , · · · ,hlk
n ], where n is the length of the question q prepended with

PREFIX. Then, hlk is passed through a convolutional neural network layer to produce [c1, · · · , cn],
and we use the prefix part as our final key representation k = [c1, · · · , cP] ∈ RP×h . For value
embeddings, we prepend a prefix to the answer, feed [PREFIX; a] into the model, and use the prefix’s
representation at the lv-th layer of encoder v = [hlv

1 , · · · ,hlv
P ] ∈ RP×h as our value representation,

where h is the size of hidden representations.

Memory Retrieval EMAT’s encoder embeds the question into a query q using the same procedure
as the key embeddings, described above. We conduct an extra step of flattening for both q and k

by averaging: k̄ = flatten(k) = 1
P

∑P
j=1 kj . The key-value encoder shares the parameters with the
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question encoder, and we define the query-key similarity by the inner product between the flattened
query representation and key representation sim(q,k) = ⟨q̄, k̄⟩. At inference time, this operation can
be efficiently computed using Maximum Inner Product Search (MIPS) tools, such as faiss [Johnson
et al., 2019], to retrieve the top-k key-value pairs Z = {(ki,vi)}ki=1 based on the similarity.

Key-Value Integration Once we have retrieved the top-k key-value pairs Z, they need to be
incorporated into the model. More specifically, in the lc-th layer, all the key embeddings in Z are
ordered by their similarity with the query, and concatenated into a matrix K′ = [ki, · · · ,kk] ∈ RPk×h.
Then K′ is prepended to the lc-th layer’s hidden states. To distinguish the different keys, we
additionally add relative positional encodings to K′. In the lv-th layer, the value embedding in
Z are concatenated in the same way to produce V′, and it is added to the positions where their
corresponding key embeddings are prepended to. The updated hidden states continue the forward
pass of the remaining transformer encoder layers. Finally, the decoder generates the answer condition
on the output of the encoder, which already integrates the retrieved key-value representations.

3 Training of EMAT

Pre-Training We use T5-base’s pre-trained parameters to initialise EMAT, but the prefix embed-
dings and key encoder’s convolutional layer are trained from scratch. To obtain better representation
of key and value, we pre-train EMAT with auto-encoding training objectives. We use PAQ-L1, a
compact version of PAQ that consists of 14M QA pairs, as the pre-training corpus. The model
is trained to recover the input question x given the key embeddings k, and the answer y given
the value embeddings v, as shown in Fig. 1 (left). The tasks key auto-encoding (KAE) can be
formalised as LKAE = −

∑|X|
i=1 logP (xi | k, x<i), and the value auto-encoding (VAE) task as

LVAE = −
∑|Y |

i=1 logP (yi | v, y<i). We also need to train the model to exploit key-value memory
M for downstream tasks. Thus, it is also critical to pre-train the model to learn the key-value
integration module. We propose a self-supervised task on PAQ: For each QA pair (x, y) in PAQ,
we use the RePAQ model [Lewis et al., 2021b] to retrieve 10 other relevant QA pairs from PAQ,
and retrieve their corresponding keys K′

x = [k1, · · · ,k10] and values V′
x = [v1, · · · ,v10] from

the memory M. Then, the model is trained to generate the answer y given the question x and
the key-value embeddings corresponding to the retrieved QA pairs. The objective can be defined
as LGen = −

∑|Y |
i=1 logP (yi | x,K′

x,V
′
x, y<i). We adopt a multi-task pre-training objective to

minimise LKAE + LVAE + LGen. After pre-training, we finetune both the memory retrieval module
and the generation of EMAT on the downstream tasks.

Retrieval Objective To learn to retrieve relevant key-value pairs without labelled data, we propose
a weakly-supervised training method. First, we rank all retrieved key-value pairs retrieved from
the memory by their inner product scores. Then, for each of the top retrieved key-value pairs, if its
corresponding answer is lexically matched with the target output, then the pair is selected as positive
sample to optimise the retriever. For short output generation tasks such as ODQA, we match the
answer corresponding to the retrieved value with the target answer. For long sequence generation
tasks, we normalise the target sequence (i.e., lower-casing and removing stop words), and check
whether the retrieved value (answer) is contained in the normalised sequence. Because the memory
is very large, it is time-consuming to encode and retrieve the entire memory. Thus, we introduce
a caching method for more efficient training, elaborated in Appendix B. We sample one positive
key-value pairs based on the similarity scores from the lexically matched pairs, and sample k negative
pairs that do not match the target sequence. Then, we follow Karpukhin et al. [2020] and use these
positive and negative samples to train the retrieval module, whose loss is denoted as LRet.

Overall Finetuning Objective The generator is optimised to generate the target y given the input
x and the top-n retrieved key-value pairs Z: LGen = −

∑|Y |
i=1 logP (yi | x, Z, y<i), so the overall

finetuning objective is LRet + LGen.

4 Experiments

Experimental Setup We evaluate our method on several knowledge-intensive NLP tasks [Petroni
et al., 2021], including Open-Domain Question Answering (ODQA), Open-Domain Dialogue (ODD),
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Model NQ TQA WQ
EM Q/s EM EM

Parametric models
T5-base [Roberts et al., 2020] 25.8 1600 24.4 26.6
T5-large [Roberts et al., 2020] 27.6 570 29.5 27.7
T5-3B [Roberts et al., 2020] 30.4 55 35.1 33.6
T5-11B [Roberts et al., 2020] 32.6 - 42.3 37.2
BART-large [Lewis et al., 2020a] 26.5 570 26.7 27.4

Retrieval-only models
Dense Retriever [Lewis et al., 2021a] 26.7 - 28.9 -
DensePhrases [Lee et al., 2021] 40.9 18 50.7 -
RePAQ-base [Lewis et al., 2021b] 40.9 1400 39.7 29.4
RePAQ-large [Lewis et al., 2021b] 41.2 1100 - -
RePAQ-xlarge [Lewis et al., 2021b] 41.5 800 41.3 -

Retrieval-augmented models
REALM [Guu et al., 2020] 40.4 - 55.8 40.7
DPR [Karpukhin et al., 2020] 41.5 1.1 57.9 42.4
QAMAT [Chen et al., 2022] 44.7 240* 48.0 39.4
RePAQ rerank [Lewis et al., 2021b] 45.7 55 48.9 37.6
RAG [Lewis et al., 2020b] 44.5 9.6 56.8 45.2
FiD-base [Izacard and Grave, 2021] 48.2 1.2 65.0 32.4
FiD-large [Izacard and Grave, 2021] 51.4 0.7 67.6 -

Ours
EMAT-FKSV 44.3 1000 44.4 36.7
EMAT-SKSV 43.3 1200 43.7 33.2

Table 1: Exact Match results for EMAT in comparison
to recent state-of-the-art systems. ∗ QAMAT runs on
32 TPU-v3 with 1024GB TPU memory, whereas ours
run on A100 GPU with 40GB GPU memory.

Model F1 R-L U/s
Parametric models
Trans MemNet Dinan et al. [2019] 11.85 10.11 -
BART-large [Lewis et al., 2020a] 12.86 11.77 55
T5-base [Raffel et al., 2020] 13.53 12.40 160

Retrieval-augmented models
BART + DPR [Petroni et al., 2021] 15.19 13.23 0.7
RAG [Lewis et al., 2020b] 13.11 11.57 3.4

Retrieval-only models
RePAQ w/ EMAT key encoder 1.84 1.48 -

Ours
EMAT-FKSV 15.78 14.73 141
EMAT-SKSV 15.35 14.68 150

Table 2: Results on the Wizard-of-Wikipedia dataset
from the KILT benchmark.

Model F1 R-L Q/s
Parametric models
BART-large [Lewis et al., 2020a] 19.23 20.55 30
T5-base [Raffel et al., 2020] 16.01 19.08 76

Retrieval-augmented models
BART + DPR [Petroni et al., 2021] 17.88 17.41 0.2
RAG [Lewis et al., 2020b] 14.51 14.05 0.4

Retrieval-only models
RePAQ w/ EMAT key encoder 1.40 1.65 -

Ours
EMAT-FKSV 18.42 20.61 67
EMAT-SKSV 19.03 20.91 71

Table 3: Results on the ELI5 dataset from the KILT
benchmark.

and Long-Form Question Answering (LFQA). For ODQA, we choose three commonly used datasets –
NaturalQuestions [NQ, Kwiatkowski et al., 2019], TriviaQA [TQA, Joshi et al., 2017], and WebQues-
tions [Berant et al., 2013]. We use Wizard-of-Wikipedia [WoW, Dinan et al., 2019] for ODD, and
[ELI5, Fan et al., 2019] for LFQA. We use PAQ [Lewis et al., 2021b] as our knowledge source, and
encode question-answer pairs in the model’s key-value memory. The baseline systems are described
in Appendix D.2 due to space limit.

ODQA Results Table 1 shows the experimental results on three ODQA datasets. Compared
with parametric models, our proposed method yields substantially higher EM scores across three
datasets. EMAT-FKSV outperforms T5-base, which share the same backbone model. These results
indicate that our method of augmenting transformer with key-value memory effectively extends
model’s knowledge capacity. Compared with retrieval-only models, our method demonstrates strong
performance. EMAT-FKSV outperforms the best RePAQ retriever (RePAQ-large) on NQ and TQA,
and EMAT’s speed is comparable to some of the fastest parametric models and retrieval-only models.
Compared with retrieval-augmented models, our EMAT is significantly faster (usually by two
orders of magnitude), while achieving comparable performances. For example, on NQ, our method
outperforms REALM and DPR, and is comparable with QAMAT and RAG.

Generalisation to Open-Domain Dialogue and Long-Form QA Table 2 and Table 3 shows the
results on WoW and ELI5 datasets. The results show that, EMAT outperforms parametric models
while retaining a similar inference speed. EMAT-FKSV outperforms T5-base and has a comparable
inference speed. EMAT outperforms retrieval-augmented models such as RAG and BART+DPR on
WoW, and EMAT is both faster and more accurate than retrieval-augmented models on ELI5 too.
In contrast, the baseline with a RePAQ-equivalent retrieval-only model performs poorly on these
two tasks, which verifies that simply retrieving relevant QA pairs will not work well on KILT tasks
that require long sequence generation. Thus, our results demonstrates that our method is capable of
representing large-scale knowledge in its memory, and it learns an effective strategy to incorporate
retrieved knowledge into the model, and generalises well to downstream tasks beyond ODQA.

5 Conclusions

In this work, we propose the Efficient Memory-Augmented Transformer (EMAT) that combines the
strength of parametric model and retrieval-augmented model. Experimental results on knowledge-
intensive NLP tasks demonstrate the accuracy and efficiency of our method.
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A Related Work

Retrieve-and-Read Models for ODQA Open-domain question answering is a task that aims to
answer a open-domain question without given context passages. Many ODQA systems follow a
two-steps retrieve-and-read architecture [Chen et al., 2017] where, in the first step, a retriever model
collects a set of relevant passages, and then a reader model processes the retrieved passages and
produces the answer [Min et al., 2019, Yang et al., 2019, Wang et al., 2019, Karpukhin et al., 2020,
Guu et al., 2020, Lewis et al., 2020b, Izacard and Grave, 2021]. Despite their high predictive accuracy,
retrieve-and-read systems have a high computational footprint, since they need to process a potentially
large number of passages [Wu et al., 2021].

Efficient OQDA Systems One simple approach to accelerate ODQA is Closed-Book QA (CBQA) –
a sequence-to-sequence model [Sutskever et al., 2014, Kalchbrenner et al., 2014] such as T5 [Raffel
et al., 2020] or BART [Lewis et al., 2020a] is fine-tuned on ODQA data, by training it to produce the
answer given the question. CBQA models are substantially faster than retrieve-and-read approaches.
However, since they solely rely on their parameters to store factual knowledge, their capacity is
limited by the model size, and hence they often produce less accurate results than retrieve-and-read
methods [Lewis et al., 2021a, Liu et al., 2021]. Another efficient approach is retrieving semantically
similar questions from a large collection of QA pair and returning the corresponding answers. Lewis
et al. [2021b] propose PAQ, a 65 million QA dataset that is constructed with the objective to cover
the most probably-asked questions in Wikipedia. RePAQ [Lewis et al., 2021b], a retrieval-based QA
system built on PAQ, won the EfficientQA competition [Min et al., 2020] in 2020, outperforming
CBQA models by a large margin. In this work, we choose PAQ as our knowledge source, but different
from RePAQ, we develop a generative model. Our results show that EMAT outperforms RePAQ
while matching its efficiency.

Memory-Augmented Transformers Geva et al. [2021] show that the Feed-Forward Network
(FFN) layers in Transformer-based language models behave similarly to like key-value memories,
where keys capture input patterns, and values map to the output vocabulary. Based on this finding,
Yao et al. [2022] propose to extend the FFN layers by concatenating a dense representation of the
corpus to the layer weights. Fan et al. [2021] introduce a neural module to access a fixed external
memory, showing that it can lead to significant improvements on downstream generative dialogue
modelling tasks. Concurrently to our work, Chen et al. [2022] propose QAMAT, a method to augment
Transformer layers with a key-value memory network encoding question-answer pairs. QAMAT
requires two inference steps through the encoder: one to retrieve memory values, and another for
concatenating the retrieved values to the input. In contrast, our proposed method only requires a
single inference steps, resulting in a significantly smaller computational footprint. Empirically, we
show that our method is ≈ 5 times faster than QAMAT, even when using fewer hardware resources.

B Memory Caching for More Efficient Training

As described above, EMAT uses MIPS for retrieving the key-value pairs that are the most relevant
to solve the current task. However, updating the memory M after each training update may not
be feasible when the number of entries in M is very large. To alleviate this problem, we design a
memory caching mechanism. At the beginning of each training epoch, we freeze the memory M and,
for each training example, we retrieve the top-n key-value pairs. The memory M is updated only at
the end of the epoch by re-encoding all entries in the knowledge source.

C Inference

During inference, we use a fast Hierarchical Navigable Small World [HNSW, Malkov and Yashunin,
2020] graph index, generated by faiss, to search and retrieve from the key-value memory M. If the
lk < lc, the search process can run in parallel with the evaluation of the layers lk + 1, · · · , lc − 1 in
EMAT. Since the search process can be efficiently executed on CPU, it does not increase the GPU
memory requirements of the model.
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D Analysis

D.1 Ablation Study

We conduct ablation study on the pre-training steps and the results are shown in Table 4. Without fine-
tuning, the pre-trained EMAT outperforms fine-tuned T5-large on NQ and TQA, and has a competitive
result on WQ. When we remove the auto-encoding (KAE and VAE) tasks, the performance on NQ and
WQ drops significantly (36.7 → 12.9 on WQ). Ablating the generation task results in substantially
worse EM on NQ and TQA (44.4 → 24.7 on TQA) The ablation results demonstrate that both auto-
encoding task and generation task are crucial to EMAT’s performance. Without all the pre-training
tasks, EMAT perform very poorly, and even worse than T5-base baseline. This may be due to the fact
that the key-value memory is not well learned and hence incorporating them will introduce noise to
the model, thus leads to poor predictions.

Model NQ TQA WQ
EMAT-FKSV 44.3 44.4 36.7

− fine-tune 30.6 32.4 25.6
− auto-encoding tasks 28.5 34.6 12.9
− generation task 28.7 24.7 31.4
− all pre-training tasks 27.1 17.7 6.0

Table 4: Ablation on the pre-training steps used by EMAT, described in Section 3, measured using
EM on NQ, TQA, and WQ: we analyse the impact of removing auto-encoding, generation, and all
pre-training tasks from EMAT’s pre-training phase.

D.2 Qualitative Analysis

Table 5 shows some examples from NQ and WoW. The presented QA pairs correspond to the top-
5 retrieved dense key-value pairs. In NQ, we can see that EMAT retrieves useful key-value and
generates correct answer from the first example. Different from retrieval-only models that only output
the top-1 retrieved QA, EMAT conducted some sort of reranking, and the decoder manages to use the
right key-value to generate the answer. In another example presented in Table 5, it demonstrates that
EMAT’s output is not always from retrieved values. It will ignore the irrelevant key-value pairs, also
uses evidences from keys, which are impossible for retrieval-only models.

In the example from WoW, it requires using the fine-grained knowledge 19th century to generate
response. We can see that EMAT retrieves context-related key-value pairs, and mainly uses the two
underlined evidences to generate response. In contrast, T5-base generates hallucinated response,
producing the wrong time “18th century”.1 This shows that, with memory augmentation, EMAT
generates a more faithful and informative response than T5-base. Besides, we find that EMAT
retrieves useful key-value pairs and makes full use of them to generate answers. This analysis
also demonstrates the interpretability of EMAT, and the feasibility of only using dense key-value
embeddings to provide knowledge.

Baselines We compare our method with three types of baselines: parametric models, retrieval-only
approaches, and retrieval-augmented models. Parametric models fine-tune sequence-to-sequence
PLMs such as T5 [Raffel et al., 2020] or BART [Lewis et al., 2020a] on a datasets, by casting each
task as a sequence generation problem conditioned on the input. In our experiments, we consider
parametric models of multiple sizes, including T5-base, T5-large, T5-3B, T5-11B [Roberts et al.,
2020], and BART-large [Lewis et al., 2020a]. Retrieval-only approaches retrieve the most relevant
information from the knowledge source (PAQ), and return the top answer as output. In ODQA
benchmark we use the RePAQ model proposed by Lewis et al. [2021b]; in ODD and LFQA, we use
the EMAT key retrieval module described in Section 2 as the retriever. Retrieval-augmented models
such as RAG [Lewis et al., 2020b] or FiD [Izacard and Grave, 2021] retrieve relevant passages from
Wikipedia using a dense retriever such as DPR [Karpukhin et al., 2020], and then use the retrieved
passages and the input sequence to condition the generation process.

1The earliest recording of music known to exist was in 19th century.
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E Data Efficiency

In Fig. 2 we show how the number of retrieved key-value pairs from PAQ-L1 influences the down-
stream EM score on Natural Questions, TriviaQA, and WebQuestions. We can see that, as the
number of retrieved memory entries increases, EMAT’s EM score also monotonically increases.
In Fig. 3 we analyse the scaling effects induced by using increasingly larger subsets of PAQ for
creating the key-value memory M on Natural Questions, TriviaQA, and WebQuestions. We can see
that EMAT’s predictive accuracy increases with the number of PAQ questions across all considered
ODQA datasets.
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Figure 2: Analysis of how changing the number of retrieved key-value pairs influences the downstream
Exact Match accuracy on several ODQA datasets.
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Figure 3: Analysis of how the number of PAQ entries used to populate the memory M influences the
downstream predictive accuracy on several ODQA datasets.

F Hyperparameters

Model Settings The length of PREFIX is 2 in EMAT. EMAT contains 225M parameters, and
T5-base contains 221M parameters. The memory cache size is set to 384 in all downstream tasks.
The retrieval loss weight and generation loss weight are both set to 1.

G Pre-Training and Fine-Tuning Configurations

We base our EMAT on T5 [Raffel et al., 2020], and initialise our model with the pre-trained param-
eters from T5-base.2 To evaluate the speed and accuracy of our proposed method under different
computation environments, we pre-train and fine-tune EMAT using two settings. In the former setting,
we set lk = 3, lc = 3, lv = 7, which emulates an environment where key embeddings has fast access,
but there is delay in acquiring value embeddings; we refer to this setting as Fast Key, Slow Value
(FKSV). In the latter setting, lk = 3, lc = 10, lv = 11, which corresponds to a scenario where both
key querying and value reading can have significant delays. We refer to this setting as Slow Key, Slow
Value (SKSV). All details on the training hyperparameters the hardware used in our experiments are
available in Appendix F.

2https://huggingface.co/t5-base
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Pretraining We pre-train for 5 epochs on PAQ-L1, using learning rate warm-ups for the first 5000
training steps to 10−4, and linear rate decay in the remaining steps. For each QA in PAQ-L1, we use
RePAQ to retrieve 10 relevant QAs from PAQ-L1. To force the model use relevant QAs’ information,
we sample 10% examples to retain itself in the relevant QA set. The weights of auto-encoding loss
and generation loss is set to 0.5 and 1.0.

ODQA For NQ and TQA, the learning rate warm-ups for the first 1000 steps to 5 × 10−5, and
linear rate decay in the remaining steps. For WQ, the learning rate is fixed to 4×10−5 during training.
We fine-tune 30 epochs on ODQA tasks, using early stop with patients of 8 epochs. We use greedy
decoding algorithm to generate answers.

WoW We fine-tune 20 epochs on WoW with 8 × 10−5 learning rate. The scheduler is same to
ODQA. We use greedy decoding algorithm to generate responses.

ELI5 We fine-tune 8 epochs on ELI5 with 5× 10−5 learning rate. The scheduler is same to ODQA.
We use beam-sample decoding algorithm to generate answers, where beam-size is 5, top-k is 64. We
force the model do not generate repeat phrases by setting no_repeat_n_gram to 8.

Hardware The machine used to measure the speed is a machine learning workstation with Intel(R)
Xeon(R) Platinum 8358 CPU, 512GB of CPU RAM and one 40GB NVIDIA A100 GPU.
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Natural Questions

Question who plays the judge in drop dead diva
Answer [Lex Medlin]
EMAT Predict: Lex Medlin
Retrieved question: who plays jane on drop dead diva? answer: Brooke Elliott

question: who plays judge french in drop dead divorce season 4? answer: Lex Medlin
question: who played fred in drop dead diva? answer: Beverly Hills, California

Question how long did the menendez brothers get in prison for killing their parents
Answer [life imprisonment, life]
EMAT Predict: life
Retrieved question: when did the menendez brothers kill their parents? answer: 1989

question: where did the menendez brothers kill their parents? answer: Beverly Hills, California
question: who sentenced the menendez brothers to life in prison? answer: Judge Weisberg

Question how long is a whale shark in meters
Answer [12.65m, estimated at 9.7m, 9.7m]
Predict: few meters
Retrieved question: how long does a whale shark live? answer: 70 to 100 years

question: how long does it take a whale shark to mature? answer: around 30 years
question: how long does it take a blue whale to dive? answer: 10 minutes

Wizard-of-Wikipedia

Dialogue history Wizard: Red the color at the end of the visible light spectrum looks good on everyone.
Apprentice: I am more of a fan of green. That would leave us only one primary color: Blue.

Ground Truth But the dominant wavelength of red is approximately 625–740. That’s impressive!
T5 Predict I agree. It is the color between green and red.
EMAT Predict it is color between violet and green on spectrum of visible light
Retrieved question: what is the next color in this series: green, white, red, green, ? answer: Blue

question: what is the color of light between violet and green? answer: Blue
question: what color looks more blue as it brightens? answer: Violet

Dialogue history
Apprentice: I like jazz.
Wizard: That’s great! Jazz is a music genre that originated in the african-american communities.
Apprentice: When did it originate?

Ground Truth Jazz originated in the late 19th century
T5 Predict It was first recorded in the late 18th century
EMAT Predict It originated in late 19th century in new orleans
Retrieved question: where did the genre of jazz originate? answer: New Orleans, United States

question: when did jazz music start in the united states? answer: 1920s
question: what genre of music does rock come from? answer: blues

Table 5: Examples from NQ and WoW.
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