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Abstract

Recent few-shot learning methods, such as parameter-efficient fine-tuning (PEFT)
and pattern exploiting training (PET), have achieved impressive results in label-
scarce settings. However, they are difficult to employ since they are highly sensitive
to handcrafted prompts, and typically require billion-parameter language models
to achieve high accuracy. To address these shortcomings, we propose SETFIT
(Sentence Transformer Fine-tuning), an efficient and prompt-free framework for
few-shot fine-tuning of Sentence Transformers (ST). SETFIT works by first fine-
tuning a pretrained ST on a small number of labeled text pairs, in a contrastive
Siamese manner. The resulting model is then used to generate rich text embeddings,
which are used to train a classification head. This simple framework requires no
prompts or verbalizers, and achieves high accuracy with orders of magnitude
less parameters and runtime than existing techniques. Our experiments show
that SETFIT1 achieves results competitive with PEFT and PET techniques, and
outperforms them on a variety of classification tasks.

1 Introduction

Figure 1: SETFIT is more sample efficient and less
variable compared to standard fine-tuning.

Few-shot learning methods have emerged
as an attractive solution to label-scarce sce-
narios, where data annotation can be time-
consuming and costly. These methods are
designed to work with a small number of
labeled training examples, and typically in-
volve adapting pretrained language models
(PLMs) for specific downstream tasks.
There are several approaches to few-shot
learning with PLMs. These include in-
context learning (ICL), parameter-efficient
fine-tuning (PEFT), and prompt-based tun-
ing. Unfortunately, these approaches can
be impractical for many researchers and
practitioners. For instance, these ap-
proaches typically rely on the use of large-scale PLMs like T0 (Sanh et al., 2021) or GPT-3 (Brown
et al., 2020a) to achieve high performance. As a result, training and deploying these few-shot methods

1https://github.com/huggingface/setfit
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typically requires specialized infrastructure with limited accessibility. Moreover, existing few-shot
methods often require, as part of their training, the input of manually generated prompts. This yields
varying outcomes depending on the level of manual prompt-engineering.
In this paper we propose SETFIT, an approach based on Sentence Transformers (Reimers and
Gurevych, 2019) that dispenses with prompts altogether and does not require large-scale PLMs to
achieve high accuracy. For example, with only 8 labeled examples in the Customer Reviews (CR)
sentiment dataset (Hu and Liu, 2004), SETFIT is competitive with fine-tuning on the full training
set, despite the fine-tuned model being three times larger (see Figure 1). We demonstrate SETFIT’s
efficacy in few-shot text classification over a range of datasets. We compare our method to standard
PLM fine-tuning, state-of-the-art PET- and PEFT-based methods such as ADAPET (Tam et al., 2021)
and T-FEW, as well as recent prompt-free techniques such as PERFECT (Karimi Mahabadi et al.,
2022a).
We summarize our contributions as follows:

1. We propose SETFIT– a simple and prompt-free method – and provide a comprehensive
guide for applying it in practical few-shot settings.

2. We evaluate SETFIT’s performance on a variety of few-shot text classification tasks and
show that it outperforms the state-of-the-art prompt-free method and ranks alongside much
larger prompt-based, few-shot models.

3. We make the code and data used in our work publicly available.1

2 Related Work

Few-shot approaches have recently received a great deal of interest in the research community.
Specifically, we consider ICL, PEFT, and prompt-based approaches. ICL models directly generate
predictions based on input-to-output training examples provided as prompts, without any parameter
updates. Perhaps the best known example is GPT-3 (Brown et al., 2020b), which achieves remarkable
few-shot performance. However, GPT-3 contains 175 billion parameters and requires massive
computational resources, prompt engineering, and can only utilize pretrained knowledge.
PEFT methods, such as adapters (Rebuffi et al., 2017), hold the majority of parameters fixed during
training and only update small feed-forward networks that are inserted within the larger model
architecture. A recent example is T-FEW (Liu et al., 2022), which outperforms GPT-3 at much lower
computational cost. It accomplishes this by adding learned vectors that rescale the network’s internal
activations. T-FEW is 16 times smaller than GPT-3, but is still too large to be utilized as a practical
tool. It also requires a set of handcrafted prompts for each dataset.
Another alternative to ICL is prompt-based fine-tuning. This approach converts the downstream
classification task into a masked-language modeling (MLM) objective. The model outputs tokens in
a cloze-style format that maps to the corresponding labels via a predefined template. A well known
example of this method is Pattern Exploiting Training (PET) (Schick and Schütze, 2021b,a) . Like
GPT-3, PET relies on manually-crafted prompts, but since the model can be fine-tuned to specific
tasks, PET-based approaches typically outperform GPT-3 in few-shot scenarios, even with far smaller
PLM backbones. PET has since been extended in two main directions: ADAPET (Tam et al., 2021),
which improves PET with a decoupled label objective and label-conditioned MLM objective, and
PERFECT (Karimi Mahabadi et al., 2022b) which uses task-specific adapters (Houlsby et al., 2019;
Pfeiffer et al., 2021) and multi-token label-embeddings eliminate task prompts and verbalizers.

3 SetFit

SETFIT is based on Sentence Transformers (ST) which are modifications of pretrained transformer
models that use Siamese network structures to derive semantically meaningful sentence embeddings.
The goal of these models is to minimize (maximize) the distance between pairs of semantically
similar (distant) sentences. SETFIT works by first fine-tuning a pretrained ST on a small number
of labeled text pairs, in a contrastive manner. The resulting model is then used to generate rich text
embeddings, which are used to train a classification head (see Figure 2).

ST fine-tuning To better handle the limited amount of labeled training data, we adopt a contrastive
training approach that is often used for image similarity detection (Koch et al., 2015). Formally,
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Figure 2: SETFIT ’s fine-tuning and training block diagram.

given a small set of K labeled examples D = {(xi, yi)}, where xi and yi are sentences and their
class labels, respectively. For each class label c ∈ C, we generate a set of R positive triplets
T c
p = {(xi,xj , 1)}, where xi and xj are pairs of randomly chosen sentences from the same class c

such that (yi = yj = c). Similarly, we generate a set of R negative triplets T c
n = {(xi,xj , 0)}, such

that (yi = c, yj ̸= c). Finally, the contrastive fine tuning data set T is produced by concatenating
the positive and negative triplets across all class labels; T = {(T 0

p ,T
0
n), ..., (T

|C|
p ,T

|C|
n )}, where |C|

is the number of class labels, |T | = 2R|C| is the number of pairs in T and R is a hyperparameter.
Unless stated otherwise, we used R = 20 in all of the evaluations.

Classification head training In this second step, the fine-tuned ST encodes the original labeled
training data {xi}, yielding one sentence embedding per training sample- Embxi = ST (xi) where
ST () is the function representing the fine-tuned ST. The embeddings along with their class labels
constitute the training set for the classification head TCH = {(Embxi , yi)} where |TCH | = |D|. A
logistic regression model is used as the text classification head throughout this work.

Inference At inference time, the fine-tuned ST encodes an unseen input sentence (xi) and produces
a sentence embedding. Next, the classification head that was trained in the training step, produces
the class prediction of the input sentence based on its sentence embedding. Formally, xpred

i =
CH(ST (xi)) where CH represents the classification head prediction function.

4 Experiments

Data We conduct experiments on a variety of text classification datasets and split them into
development and test datasets (See Table 5 in appendix A.1). The development datasets are utilized
for setting SETFIT’s hyperparameters such as the number of training pairs (|T |). In addition we
evaluate SETFIT on the RAFT benchmark (Alex et al., 2021), a real-world few-shot text-classification
benchmark composed of 11 practical tasks, where each task has only 50 training examples.

SETFIT models We evaluate three variations of SETFIT with different underlying ST model sizes
(Shown in Table 1). We fine-tune SETFIT’s ST model using cosine-similarity loss with a learning
rate of 1e−3, a batch size of 16 and a maximum sequence length of 256 tokens, for 1 epoch.

Variation Underlying ST Model Size∗

SETFITROBERTA all-roberta-large-v1† 355M
SETFITMPNET paraphrase-mpnet-base-v2† 110M
SETFITMINILM paraphrase-MiniLM-L3-v2† 15M

Table 1: SETFIT model variations using three different
underlying ST models. ∗Number of parameters. †https:
//huggingface.co/sentence-transformers

Baselines We select the following promi-
nent methods as baselines (see implementa-
tion details in appendix A.2):2

LINEARPROBE We run linear probe exper-
iments using a pretrained ST (paraphrase-
mpnet-base-v2) to generate embeddings for a
linear classification head. This baseline pro-
vides an ablation on the effect of constrastive
learning in SETFIT.
FINETUNE We use ROBERTALARGE (Liu et al., 2019) as a standard fine-tuning baseline.
ADAPET (Tam et al., 2021) We use ADAPET with different PLM backbones, and found albert-xxlarge-
v23 produced the best performance.

2Unless otherwise stated, we use the default hyperparameters provided in each baseline’s original paper.
3https://huggingface.co/albert-xxlarge-v2
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Method SST-5 AmazonCF CR Emotion EnronSpam AGNews Average∗

|N | = 8
LINEARPROBE 36.72.0 22.17.4 84.22.3 37.83.0 90.41.8 74.32.8 57.63.2

FINETUNE 33.52.1 9.24.9 58.86.3 28.76.8 85.06.0 81.73.8 43.05.2

PERFECT 34.93.1 18.15.3 81.58.6 29.85.7 79.37.4 80.85.0 48.76.0

ADAPET 50.01.9 19.47.3 91.01.3 46.23.7 85.13.7 85.12.7 58.33.6

T-FEW 55.41 27.46 91.61.2 54.71.3 94.32.3 – 64.72.4

SETFITMPNET 43.63.0 40.311.8 88.51.9 48.84.5 90.13.4 82.92.8 62.34.9

|N | = 64
LINEARPROBE 42.21.6 40.72.2 88.20.7 50.81.5 95.40.6 84.40.7 67.01.2

FINETUNE 45.96.9 52.812.1 88.91.9 65.017.2 95.90.8 88.40.9 69.77.8

PERFECT 49.10.7 65.15.2 92.20.5 61.72.7 95.41.1 89.00.3 72.71.9

ADAPET 54.10.8 54.16.4 92.60.7 72.02.2 96.00.9 88.00.6 73.82.2

T-FEW 57.20.4 47.17.6 92.91.5 72.50.9 97.40.3 – 73.42.1

SETFITMPNET 51.90.6 61.92.9 90.40.6 76.21.3 96.10.8 88.00.7 75.31.3

Table 2: SETFIT performance score and stdev compared to the baselines across 6 test datasets for
two training set sizes |N |. ∗The AGNews dataset is excluded from the average score to enable fair
comparison with T-FEW (which included AGNews in its training set).

PERFECT To run PERFECT on our test datasets, we adapted the configurations provided in the
PERFECT codebase.4

T-FEW We run the 11 billion model variant described in the T-FEW paper (Liu et al., 2022).

Experimental Setup Systematically evaluating few-shot performance can be challenging, because
fine-tuning on small datasets may incur instability (Dodge et al., 2020; Zhang et al., 2021). To address
this issue, in our experiments we use 10 random training splits for each dataset and sample size.
These splits are used as training data across all tested methods. For each method, we report the
average measure (depending on the dataset) and the standard deviation across these splits.

5 Results and Discussion

Table 2 shows a comparison between SETFITMPNET and the baselines for N = 8 and N = 64 labeled
training samples per class. We find that SETFITMPNET significantly outperforms the FINETUNE
baseline for N = 8 by an average of 19.3 points. However, as the number of training samples increases
to N = 64, the gap decreases to 5.6 points. Similarly, we find that SETFITMPNET outperforms
PERFECT by 13.6 and 2.6 points. SETFITMPNET also outperforms ADAPET by 4.0 and 1.5 points for
N = 8 and N = 64 respectively. Interestingly, the LINEARPROBE baseline outperforms PERFECT
for N = 8 and is competitive with ADAPET. For N = 8, T-FEW outperforms SETFITMPNET by
2.4 points, whereas for N = 64 SETFITMPNET outperforms T-FEW by 1.9 average accuracy points,
despite being prompt-free and 100 times smaller.

Rank Method Score Size∗

1 YIWISE† 76.8 -
2 T-FEW 75.8 11B
4 Human baseline 73.5 -
6 SETFITROBERTA 71.3 355M
9 PET 69.6 235M

11 SETFITMPNET 66.9 110M
12 GPT-3 62.7 175B

Table 3: SETFIT compared to prominent
methods on the RAFT leaderboard (Sept. 5,
2022). ∗Model size (#parameters). †We
could not find information regarding YI-
WISE.

RAFT results The test datasets listed in Table 2
were not specifically designed for few-shot bench-
marking. In order to better benchmark SETFIT, we
used the RAFT benchmark (Alex et al., 2021) which
is specifically designed for benchmarking few-shot
methods.
Table 3 shows the average accuracy points of
SETFITMPNET and SETFITROBERTA and four other
prominent methods. SETFITROBERTA outperforms
GPT3 and PET by 8.6 and 1.7 points respectively.
SETFITROBERTA falls short of T-FEW by 4.5 points.
however, SETFITROBERTA is more than 30 times
smaller than T-FEW, does not require manual prompt
crafting and is much more efficient in training and
inference (see Table 4).

4https://github.com/facebookresearch/perfect
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Limitations of this work Although SETFIT achieves strong performance on text classification, it is
unclear whether the method can be extended to token classification or two-sentence classification
tasks such as natural language inference. Another limitation of our method compared to T-FEW is
that it requires fine-tuning when applied to new tasks, whereas T-FEW does not require task-specific
tuning.

6 Computational Costs

Method
Inf.
FLOPs

Train
FLOPs

Speed-
up Score

T-FEW 5.9e11 1.4e16 1x 64.71.9

SETFITMPNET 8.3e9 2.0e14 71x 62.34.9

SETFITMINILM
∗ 1.3e9 3.2e13 450x 60.31.6

Table 4: Relative computational cost and average
scores of SETFIT and T-FEW using |N | = 8 on
the test datasets listed in Table 2. Trained in a
distillation setup (see A.6).

In order to compare the computational costs of
SETFIT versus other methods, we follow the
approach adopted by Liu et al. (2022) and use
FLOPs-per-token estimates to compare SETFIT
to T-FEW. See appendix A.4 for detailed de-
scription of FLOPs-per-token estimations. Table
4 shows the computational cost comparison be-
tween SETFIT and T-FEW. The SETFITMPNET

model is an order of magnitude faster at infer-
ence and training than T-FEW, despite having
comparable performance on the test datasets of
Table 2. SETFITMINILM is two orders of magnitude faster than T-FEW with average score reduction
of 4.4 points. Moreover, the storage cost of the SETFIT models (70MB and 420MB respectively)
is 636 to 106 times smaller than the T0-11B checkpoint used by T-FEW (44.5GB), making these
models much better suited for real-world deployment.
These estimates are borne out by comparing the time needed to train each method to convergence
on N = 8 examples. For our datasets, SETFITMPNET takes approximately 30 seconds to train on a
p3.2xlarge AWS instance (16GB GPU memory), at a cost of $0.025 per split. On the other hand,
T-FEW requires at least 80GB GPU memory, and training on a p4d.24xlarge AWS instance takes
approximately 736 seconds, at a cost of $1.05 per split.

7 Conclusion

This paper introduces SETFIT, a new few-shot text classification approach. We show that SETFIT
has several advantages over comparable approaches such as T-FEW, ADAPET and PERFECT. In
particular, SETFIT is much faster at inference and training; SETFIT requires much smaller base
models to be performant, and does not require manual prompting.
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A Appendix

This appendix describes additional evaluations of the SETFIT method.

A.1 Datasets

Table 5 shows the development and test datasets that are used for setting SETFIT’s hyperparameters.
Following is a description of the datasets used:

Dataset Name Type of Task Cls.∗ Label Dist.** Metric Split
SST5 Sentiment 5 Approx. equal Accuracy Test
Amazon Counterfactual Counterfactual 2 10% counterfactual MCC Test
CR Sentiment 2 Equal Accuracy Test
Emotion Emotion 6 Equal Accuracy Test
Enron Spam Unwanted Language 2 Equal Accuracy Test
AG News Topic 4 Equal Accuracy Test
SST2 Sentiment 2 Equal Accuracy Dev
IMDB Sentiment 2 Equal Accuracy Dev
BBC News Topic 5 Equal Accuracy Dev
Student Question Categories Topic 4 Approx.Equal Accuracy Dev
TREC-QC Topic 50 N/A Accuracy Dev
Toxic Conversations Unwanted Language 2 8% Toxic Avg. Precision Dev
Amazon Polarity Sentiment 2 Equal Accuracy Dev

Table 5: English datasets used for development and test experiments. ∗No. of classes per dataset.
∗∗Distribution of the examples across classes.

SST2 The Stanford Sentiment Treebank 2 is a collection of single sentence movie reviews with
positive-negative sentiment class labels. Socher et al. (2013).

IMDB The Internet Movie Database dataset is a collection of single sentence movie reviews with
positive-negative sentiment class labels. Maas et al. (2011).

BBC News The BBC News dataset is a collection of articles from the news outlet BBC with one of
5 topic classifications: Politics, Sports, Entertainment, Tech, and Business. Greene and Cunningham
(2006).

Enron Spam The Enron spam email dataset consists of emails from the internal Enron correspon-
dence channel where emails are classified as spam or not spam. V. Metsis and Paliouras (2006).

Student Question Categories This dataset5 is a set of questions from university entrance exams in
India that are classified into 4 subjects: Math, Biology, Chemistry, Physics.

TREC-QC The Text Retrieval Conference Question Answering dataset.

5www.kaggle.com/datasets/mrutyunjaybiswal/iitjee-neet-aims-students-questions-data
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Toxic Conversations The Toxic Conversations dataset6 is set of comments from Civil Comments,
a platform for reader comments for independent news outlets. Human raters have given them toxicity
attributes.

Amazon Polarity The Amazon Polarity dataset7 consists of customer reviews from Amazon taken
over 18 years with binary sentiment labels. Examples are either positive ("Great Read") or negative
("The Worst!") labelled. Zhang et al. (2015a).
Following is a description of the test datasets:

Stanford Sentiment Treebank-5 (SST5) The SST-5 dataset is the fine-grained version of the
Stanford Sentiment Treebank, where each example is given one of five labels: very positive, positive,
neutral, negative, very negative.

Amazon Counterfactual The Amazon Counterfactual dataset is set of Amazon customer reviews
with professionally labeled binary labels of counterfactual detection. Counterfactual statements are
statements that denote something that did not happen or cannot (e.g. "They are much bigger than I
thought they would be."). We used the English subset for our experiments. O’Neill et al. (2021).

Emotion The Emotion dataset8 consists of tweets from Twitter that display clear emotions (e.g. "i
am now nearly finished [with] the week detox and i feel amazing"). Labels are one of six categories:
anger, fear, joy, love, sadness, and surprise. Saravia et al. (2018).

AG News AG News is a dataset of news titles from AG news with one of 4 classifications (World,
Entertainment, Sports, and Business). Zhang et al. (2015b).

A.2 Baselines Implementation Details

Following are the implementation details that were used for fine-tuning our baselines:

FINETUNE We perform a hyperparameter search on the number of epochs in the range [25,75] and
pick the best performing model on a validation split. We use a learning rate of 2e−5 and batch size of
4 in all our experiments.

ADAPET By default, ADAPET assumes access to a training, development, and test dataset. It trains
for 1, 000 batches, runs predictions on the development data every 250 batches and checkpoints,
keeping the model state which performed best on the development dataset. In our case, where we
assume few-shot training and no development data, we ran ADAPET for 1, 000 batches and disabled
the checkpointing, using the model state that resulted after training for 1, 000 batches. For the English
data in Table 2, we used the pattern "[TEXT1] this is [LBL]", where "[TEXT1]" and "[LBL]" are
placeholders for a given piece of text and the corresponding label, respectively. We chose this pattern
as a variation of the pattern the ADAPET authors provide in their code9. In our development phase,
this pattern empirically yielded stronger performance compared to the handful of patterns we tried.
We constructed the verbalizer from the "label" and "label text" columns that are available in all of our
datasets.
We used the default hyperparameters and examined its performance with different PLM backbones,
reporting the PLM which resulted in the best performance, albert-xxlarge-v210.

PERFECT To run PERFECT on our test datasets, we adapted the configurations provided in the
PERFECT codebase.

T-FEW Running tests on T-FEW as opposed to SETFIT posed several hurdles. First, because
T-FEW’s performance varies significantly depending on the input prompts, we run each experiment

6https://www.kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification/
data

7https://huggingface.co/datasets/amazon_polarity
8https://huggingface.co/datasets/emotion
9https://github.com/rrmenon10/ADAPET/blob/master/config/sst-2.json

10https://huggingface.co/albert-xxlarge-v2
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using 5 random seeds, and report the median result, as in the original paper. Second, T-FEW relies on
dataset-specific prompts, made available on P3 (Public Pool of Prompts) (Bach et al., 2022). The
Emotion dataset is the only one that had existing prompts in P3. For the rest of the datasets, we adapt
standardized P3 prompts of similar tasks or implement prompts ourselves (appendix A.3 lists the
prompts we created).

A.3 Prompts used in T-FEW

Following are the prompts we created for

• Prompts for Enron Spam, a spam e-mail detection dataset, were adapted from sms_spam
dataset prompts.

• CR prompts were adapted from amazon_polarity.
• SST5 prompts were adapted from yelp_review_full.

The Amazon Counterfactual dataset does not have any relevant prompts on P3. Hence, we manually
generated prompts ourselves, based on standard practices for prompt creation published in P3. We also
added two new prompts for SST5, to make it compatible with the label names of SST5. Following is
a list of prompts we created for each dataset:

Amazon Counterfactual Prompts

Input template:

{{text}} Is the statement factual?

Target template:

{{ answer_choices [label] }}

Answer choices template:

Yes ||| No

Input template:

{{text}} Does the statement describe a fact?

Target template:

{{ answer_choices[label] }}

Answer choices template:

Yes ||| No

Input template:

{{text}} Is the statement non-counterfactual or counterfactual?

Target template:

{{ answer_choices[label] }}

Answer choices template:

non-counterfactual ||| counterfactual

Input template:

{{text}} Is the statement counterfactual?

Target template:
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{{ answer_choices[label] }}

Answer choices template:

No ||| Yes

Input template:

{{text}} Does the sentence express an event that did not happen?

Target template:

{{ answer_choices[label] }}

Answer choices template:

No ||| Yes

Input template:

{{text}} Does this describe an actual event?

Target template:

{{ answer_choices[label] }}

Answer choices template:

Yes ||| No

Input template:

{{text}} Does the sentence contain events that did not or cannot take place?

Target template:

{{ answer_choices[label] }}

Answer choices template:

Yes ||| No

Input template:

Is the label for the following sentence non-counterfactual or counterfactual?
{{text}}

Target template:

{{ answer_choices[label] }}

Answer choices template:

non-counterfactual ||| counterfactual

New prompts for SST5

Input template:

How do you feel about the following sentence? {{ text }}

Target template:
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{{ answer_choices[label] }}

Answer choices template:
very negative ||| negative ||| neutral ||| positive ||| very positive

Input and target templates:
{{ text }} This movie is a very ||| {{ answer_choices[label] }} one

Answer choices template:
terrible ||| bad ||| okay ||| good ||| great

A.4 Computational costs

Comparing the relative computational costs of SETFIT versus methods such as T-FEW is complicated
by the fact that each method typically has different hardware and memory requirements. To simplify
the comparison, we follow the approach adopted by (Liu et al., 2022) and use FLOPs-per-token
estimates to compare SETFIT to T-FEW. These estimates can be obtained from Kaplan et al. (2020),
who show that encoder-only models with N parameters have approximately 2N FLOPs-per-token
for inference and 6N FLOPs-per-token for training. For a given input sequence length ℓseq, the final
estimate for inference is 2N × ℓseq, while training is 6N × ℓseq × nsteps × nbatch, where nsteps is
the number of training steps and nbatch is the batch size. For encoder-decoder models like T-FEW,
these estimates are halved.
For the inference and training estimates shown in Table 4 in Section 6, we use 38 (54) tokens as
the input sequence length for SETFITMPNET (T-FEW), which is the median taken across all the test
datasets in Table 2 in Section 5.

A.5 Multilingual Experiments

To determine SETFIT’s performance in a multilingual, few-shot text classification scenario, we
conducted development and test experiments on multilingual datasets and compared SETFIT to
standard transformer fine-tuning and ADAPET. To the best of our knowledge, this is the first work to
examine ADAPET on non-English data.

Experimental Setup For the multilingual experiments, we use the Multilingual Amazon Reviews
Corpus (MARC) Keung et al. (2020). This dataset consists of Amazon reviews in six languages
(English, Japanese, German, French, Spanish, and Chinese), where each review is labeled according
to a 5-star rating scale. We chose this corpus for its typological diversity in order to examine the
generalizability of SETFIT and other methods across a variety of languages.
For the SETFIT underlying model, we use paraphrase-multilingual-mpnet-base-v2,11 which is a
multilingual version of paraphrase-mpnet-base-v2 that is trained on parallel data in over 50 languages.
For the FINETUNE and ADAPET baselines, we use XLM-ROBERTABASE (Conneau et al., 2019),12

which has a similar size to the SETFIT model. We compare the performance of each method using
the same settings as (Conneau et al., 2019):

• each: Train and evaluate on monolingual data to measure per-language performance.
• en: Train on the English training data and then evaluate on each language’s test set.
• all: Train on all the training data and evaluate on each language’s test set.

Method For SETFIT standard fine-tuning, and ADAPET, we adopt the same methodology and
hyperparameters used for the monolingual English experiments in 4. We evaluate each method in the
few-shot regime (N = 8 samples per class) and compare against performance of fine-tuning on the
full training set of 20,000 examples.

11huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
12huggingface.co/xlm-roberta-base
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Method Train En De Ja Zh Fr Es Average
|N | = 8∗

each 122.914.0 119.913.6 120.58.0 128.610.7 123.213.0 116.38.3 121.911.3
FINETUNE en 115.911.3 115.212.0 121.612.3 123.08.8 117.313.0 113.112.4 117.711.6

all 117.84.9 116.39.7 121.512.4 120.56.7 117.39.9 110.19.5 117.28.8

each 129.913.6 136.410.6 130.413.4 135.010.9 141.810.1 136.010.4 134.911.5

ADAPET en 138.917.8 151.517.8 160.816.7 158.816.3 152.015.7 149.817.1 152.016.9

all 150.812.0 136.27.0 150.810.0 152.810.2 140.014.0 145.14.5 146.011.3

each 82.94.3 80.02.4 95.52.8 95.32.8 85.36.0 80.85.4 86.64.9
SETFIT en 82.64.8 83.45.9 93.26.6 93.93.6 82.24.8 83.45.9 86.45.2

all 83.05.3 84.07.6 97.19.2 97.46.5 83.56.5 84.96.1 88.36.9

|N | =Full∗∗
each 46.2 43.7 46.8 56.6 47.8 45.3 47.7

FINETUNE en 46.1 46.6 61.0 69.4 55.6 52.9 55.3
all 46.6 49.4 61.0 69.4 55.6 55.0 56.2

Table 6: Average performance (MAE × 100) on the Multilingual Amazon Reviews Corpus for two
training set sizes |N |. ∗ No. of training samples per class. ∗∗Entire available training data used
(20,000 samples).
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Figure 3: Average accuracy as a function of the unlabeled training set size N of the SETFIT student
and the baseline student on AG News, Emotion and SST5 datasets.

Results Table 6 shows the results of SETFIT standard fine-tuning, and ADAPET on each language
in MARC, where a higher MAE indicates weaker performance. In the few-shot regime of N = 8
samples per class, we find that SETFIT significantly outperforms FINETUNE and ADAPET in all
settings (each, en, all), with the best average performance obtained when training on English data
only.

A.6 Few-shot distillation

We have shown that SETFIT achieves state-of-the-art results in few-shot setups using underlying
base models such as paraphrase-mpnet-base-v2 and ROBERTALARGE, containing 110M parameters
and 355M parameters respectively; but in real-world deployments, where cost and sustainability are
prioritized, the use of even more efficient models is desirable. Previous works have shown model
distillation to be effective in reducing computational load while preserving much of the original
model’s performance (Ba and Caruana, 2014; Hinton et al., 2015). In this section we evaluate the
performance of SETFIT as a student model compared to a standard transformer student model in
few-shot distillation setups when the amount of unlabeled training data is limited.

Experimental Setup For the distillation tests we use the datasets AGNews, Emotion and SST-5
shown in Table 5. For the SETFIT teacher we chose SETFITMPNET, which contains 110M parameters,
whereas for the SETFIT student we chose SETFITMINILM, which is a much smaller model (15M
parameters). For fair comparison, we use as the baseline student MiniLM-L3-H384-uncased13, a

13huggingface.co/nreimers/MiniLM-L3-H384-uncased

13

huggingface.co/nreimers/MiniLM-L3-H384-uncased


standard transformer encoder of the same size as our SETFIT student model. For each of the three
datasets we train the SETFIT teacher model using only 16 labeled samples per class, and the student
models are trained using the same 16 labeled samples per class together with various amounts of
additional unlabeled data. We follow the same data-split policy and SETFIT training parameters’
settings described in Section 4.

Method The SETFIT student is trained using sentence pairs and the level of similarity between each
pair as input. The similarity is generated by using the underlying ST of the teacher to produce sentence
embeddings for each pair and to calculate the cosine-similarity between them. The underlying ST of
the SETFIT student is trained to mimic the ST of the teacher output by minimizing the error between
the SETFIT teacher-produced cosine-similarity and its output. The classification head of the student
is then trained using the embeddings produced by the student’s ST and the logits produced by the
SETFIT teacher. The baseline student is trained to mimic the teacher output by minimizing the error
between the logits produced by the SETFIT teacher and its its output.

Results Figure 3 shows a comparison between the SETFIT student model and the baseline student
model for various amounts of unlabeled training data (N ). The SETFIT student significantly outper-
forms the baseline student when only small amounts of unlabeled data are available. For example, for
N = 8, the SETFIT student outperforms the baseline student by 24.8, 25.1, and 8.9 average accuracy
on the AG News, Emotion and SST5 datasets, respectively. As N increases, the performance gains
decrease and are on par for N = 1K.
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