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Abstract

Acoustic models typically employ production and perception based short-term
features. In the context of deep models the acoustic information is hierarchically
combined either 1) across frequency bands followed by temporal modelling similar
to cepstrum features; or 2) across temporal trajectories followed by combination
across spectral bands similar to relative spectra (RASTA) features. Such a process-
ing pipeline is often implemented using low-rank methods to achieve low-footprint
compared to SOTA models involving simultaneous spectral-temporal processing.
However, very few attempts have been made to address the question of if and
how such deep acoustic models flexibly integrate information from spectral or
temporal features. In this work with the help of an Large vocabulary continuous
speech recognition (LVCSR) case study, the geometry of loss landscape is used as
a visualisation tool to understand the link between generalization error and spectral
or temporal feature integration in learning task-specific information.

1 Introduction

Acoustic models have undergone a rapid evolution; from mixture model and HMM based Meyer
and Schramm [2006] to hybrid DNN-HMM Golik et al. [2015] and more recent end-to-end mod-
els Gehring et al. [2013], Rao et al. [2017] achieving state-of-the-art (SOTA) performance in various
tasks. For any deep model, one of the most important part is its front-end feature engineering pipeline,
which uses some kind of spectral or temporal processing. Typically, time-frequency (TF) represen-
tations (e.g., spectrograms) extracted from raw audios are fed to the neural networks (NN) which
embeds them to higher dimensional spaces, from which inferences can be drawn be it classification,
language prediction or speech recognition. Two of the most popular front-end feature processing
pipeline used in deep learning paradigm are Regular Convolutions and Compressed Convolutions.
There are many types of regular convolutions which vary depending on the implementation require-
ment, like 1D, 2D, 3D, with others variants such as deformed, dilated, point-wise, and grouped
convolutions. Compressed convolutions includes Depth-wise Separable Convolutions (DSC) Chollet
[2017] and Low Rank Convolutions (LRC) Tai et al. [2016], Abrol et al. [2019]. In DSC temporal
trajectories are processed followed by combination across spectral bands. In contrast, spectral trajec-
tories are processed first in LRC followed by combination across temporal dimension. These methods
have an added advantage of reducing the number of parameters, making the model robust and fast to
train. While different studies claim different performance gains in different training and architectural
setups, a very few attempts have been made to cater to questions like Which feature pipelines really
capture the generalised relationship between different spectral and temporal features? or When a
particular feature processing method should be favoured over the other?. The performance gap is
often bridged by either feeding in more data or upgrading the model to multi-modal setting; both of
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which makes it even harder to understand the modelling capability and behaviour of the underlying
acoustic model. While there exists some recent explainbility methods for acoustic models, they are
mainly restricted to analysis of first layer in raw-waveform models Gupta and Abrol [2022] or using
example specific gradient salience maps that are often redundant and can’t explain the generalization
behaviour of the whole model Muckenhirn et al. [2019].

In this work we aim to understand how spectral or temporal feature integration helps in recognising
task-specific information. With a case study on LVCSR (Large vocabulary continuous speech
recognition), we compared the performance of both DSC and LRC based front-end encoder in an
end-to-end system. To make our work more exhaustive both types of inputs raw-waveform and
spectrograms along with deep and shallow architectures are considered. The generalization behaviour
of these models is studied and explained using network’s Loss Landscape Li et al. [2018]: which
helps in visualising the geometry of loss surface irrespective of the architecture. The main takeaways
from our study are

1. Moving from shallow networks to deep networks, the superiority of one feature pipeline
over the other vanishes for large scale task and the generalisation error improves. But its
somewhat comparable for both spectral and raw-waveform inputs.

2. Deep models have flat minimizers and are less chaotic as compared to sharper one with
chaotic behaviour in case of shallow models. Further, the sharpness of loss landscape
correlates well with the model’s performance in practice.

All the experiments are reproducible & implementation is available on GitHub2. We encourage
readers to see link for animated plots towards better understanding and readability.

2 Network Visualisation using Loss Landscape

Training a NN requires optimizing a high-dimensional non-convex loss function whose shape is
greatly affected by choice of architecture, initializer, regularizer, optimizer etc Goodfellow et al.
[2015], Garipov et al. [2018]. Since, loss functions live in a high-dimensional space, most existing
methods perform visualization of loss landscape in low-dimensions. In 2D case, one chooses two
direction vectors θ1 and θ2 that act as perturbation to the original network weight θ∗ vector to plot a
function of the form

f(η, λ) = L(θ∗ + θ1η + θ2λ), (1)

where η and λ ∈ [-1,1]. In this work, the choice of θ1 and θ2 follow the filter-wise normalisation
technique as proposed in Li et al. [2018]. Inferences such as impact of network depth on sharpness of
minimizer can aid in explaining the performance, learning behaviour and generalization of the model.

3 Experimental Setup and Results

Our experiments are performed on the Librispeech Panayotov et al. [2015] dataset which consists
of 970 hours of labelled speech with end-to-end framework based on ContextNet Han et al. [2020].
This study relies on the TensorflowASR implementation where we modify the encoder pipeline,
keeping the remaining NN architecture and training strategy such as optimizer, learning-rate scheduler
and augmentation unaltered. To understand the encoder learning behaviour exclusively an external
language model is not employed and all experiments are performed using a single V100 GPU.

3.1 Model

In this work, we consider the end-to-end framework based on ContextNet Han et al. [2020], which
consists of three components: front-end convolutional neural network (CNN) feature encoder, long-
short term memory (LSTM) based label encoder, and a recurrent neural network-transducer (RNN-T)
based joint decoding network to combine the former two. Our primary interest is in the CNN
encoder, which is trained on log-mel spectral features or raw-waveforms as inputs. For raw waveform
models, we augment the encoder with a 1D CNN layer, where parameters (kernel size-400; stride-
160 and #filers-80) are chosen such that the dimensions of output feature maps are equivalent to
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the 80 dimensional log-mel spectrograms. Due to computational constraints, only reverberation &
additive noise augmentation is performed when training with wave inputs, and we expect the overall
performance to improve with more augmented data. Broadly we consider two types of encoder
design based on the the types of convolutions they employ. 1) vanilla ContextNet (CN) with DSC,
and 2) Low-Rank ContextNet (LRCN) with LRC Abrol et al. [2019]. Furthermore, we present a
comparison of deep and shallow architecture, with former having 23 convolutional blocks stacked
with skip connections. Each block has 5 convolution layers as described in Han et al. [2020]. To
obtain a shallow configuration, these blocks are replaced with single convolutional layers without any
skip connections.

Table 1: Comparison of WER for different models averaged over 10 trials.

Input NN Type Model #Param (M) WER (test-clean/other)

Spectral
Deep CN 10.82 2.6 / 7.0

LRCN 10.85 2.49 / 7.1

Shallow CN 6.29 9.4 / 12.2
LRCN 6.30 9.7 / 13.1

Wave
Deep CN 10.85 2.7 / 7.1

LRCN 10.88 2.4 / 7.0

Shallow CN 6.32 9.5 / 12.3
LRCN 6.33 9.7 / 13.2

(a) DS-CN (b) DS-LRCN (c) DW-CN (d) DW-LRCN

(f) SS-CN (g) SS-LRCN (h) SW-CN (i) SW-LRCN

Figure 1: Loss landscapes on testset for various trained acoustic models. ‘DS/DW’ and ’SS/SW’
denotes deep or shallow models with spectrogram or raw-waveform as inputs

3.2 ASR Results on LibriSpeech

Table1 reports different acoustic models that are studied in this work, their learnable parameters and
corresponding word error rates (WER) on test-clean/other data splits averaged over 10 trials. It is
observed that in case of deep spectral models both CN and LRCN models achieve comparable but
lowest WER. In contrast shallow models struggle with their performance as compared to the deep
encoders, highlighting their limited capacity to generalize well. These results are in line with SOTA
performance reported in earlier studies leading to strong baselines for our study. Further, models with
wave inputs achieve comparable WER, and we expect the performance would match to that of their
spectral counterparts in presence of a better augmentation strategy. These results demonstrates that
performance gains with temporal or spectral first processing based encoders vanishes as the depth
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(a) Epoch 3 (b) Epoch 11 (c) Epoch 14 (d) Epoch 20

Figure 2: Evolution of loss landscape of DS-LRCN model during training. Best viewed in colour.

of the encoder increases. Apart from the basic CNN structure there are other factors such as kernel
size/stride, normalization, weight regularization, dropout, skip-connections and loss functions which
may impact the overall performance. An extensive study comparing various approaches with respect
to these choices is out of the scope of this paper. In the next section we will investigate the obtained
WER using the loss landscapes of these models to explain and bring out some meaningful insights.

3.3 Loss Landscapes of Different models

Figure1 shows the loss landscapes for different models considered in Table1, where only the pa-
rameters of the encoder are modified keeping all other parameters of the model fixed. Due to space
constraints, only visualization for final trained model are plotted. Consistent with earlier studies Li
et al. [2018], Chaudhari et al. [2017], we observed that the sharpness of loss landscape minimum
correlates well with the respective WER reported in Section 3.2. Deep models with stacked blocks
having multiple convolutional layers per block have flat minimizers and are less chaotic as compared
to sharper minimizer with chaotic behaviour in case of shallow models. These results coincides
with the model’s training ability in practice and ultimately to observed generalization error in terms
of WER on testsets. It can also be infered that overall LRCN both for deep and shallow models,
attains a lower loss than CN model, which shows that models with LRC front-end are more robust to
weight perturbations/updates between successive gradient updates. The evolution of loss landscape
in Fig. 2 for LRCN model demonstrate this behaviour where the landscape transitions from more
to less chaotic over training. Beyond just performance, these observations opens up future avenues
such as to understand robustness against adversarial examples and the role of temporal context in
learning invariant acoustic representations. Similarly, the feature redundancy makes room for further
network optimisation such as in terms of model compression and optimal depth. Finally, among
shallow models, we observe very sharp minimizer for LRCN compared to CN model leading to
results in contradiction to earlier studies that shown LRC consistently outperforms DSC on a variety
of datasets Abrol et al. [2019]. We argue that this behaviour is due to very different interaction of the
front-end CNN encoder with the transducer and/or RNN-decoder in a end-to-end system compared to
isolated HMM-decoder based system, and this aspect demands a further analysis in future work.

4 Discussion and Conclusion

In this paper we made an attempt to understand feature integration and modelling in acoustic
models with different front-end processing pipelines. Through a case study on LVCSR task various
modelling choices are discussed and compared. In particular, we showed that for deep networks
the superiority of one feature pipeline over the other vanishes for a large scale task. We also
demonstrated that the bottleneck in the performance gap between models trained on spectrograms
and raw waveforms is due to sub-optimal choice of first layer parameters and lack of augmentation.
Using loss landscape visualizations we showed that the sharpness of minimizer correlates well with
the respective generalization error of a model, however further analysis is required to understand the
impact of interactions between feature encoder and decoder on performance of a system. Our study
has implications towards building an efficient model for edge applications for a given speech/audio
task, where the goal is to select an optimal spectral, temporal or specto-temporal acoustic modelling
pipeline which will result in the best accuracy even on out-of-domain data.
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