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Abstract

A fundamental task of fine-grained sentiment analysis is aspect term extraction.
Supervised-learning approaches have demonstrated state-of-the art results for this
task; however, they underperform in few-shot scenarios, where labeled training
data is scarce. Prompt-based training has proven effective in few-shot sequence
classification; however, it would not apply to token classification tasks. In this
work we propose PATE (Prompt-based Aspect Term Extraction), a few-shot
prompt-based method for the token classification task of aspect term extraction.
We demonstrate that this method significantly outperforms the standard supervised
training approach in few-shot setups and make our code publicly available1.

1 Introduction

A fundamental task of fine-grained sentiment analysis is aspect term extraction (ATE). ATE aims to
detect aspects that may have associated opinions in a textual review. For example, in the sentence

“The battery life is amazing”, the aspect term is battery life (and the associated opinion term is
amazing). ATE is typically formulated as a supervised token classification task. RNN-based models
(Liu et al., 2015) and Transformer-based models (Vaswani et al., 2017) showed promising results
when trained on thousands of labeled sentences. However, real-world deployments are often required
to operate in few-shot environments where labeled training data is scarce and costly.

Recent few-shot prompt-based methods such as PET (Schick and Schütze, 2021a,b) and ADAPET
(Tam et al., 2021) achieve state-of-the-art results in data-scarce environments. They convert the
classification task into a masked language modeling (MLM) objective, which pre-trained language
models are typically trained on, and excel in. Those prompt-based models output tokens in a cloze-
style format that map to the corresponding labels via a predefined template. However, those methods
are designed for sequence classification tasks and would not apply for token classification tasks. In
this paper we propose PATE, a prompt-based method for token classification that is applied for the
ATE task. PATE works by first extracting token-level aspect candidates and then using prompts for
generating cloze-style yes/no questions for filtering out non-aspect candidates.

The contribution of this paper is twofold. First, we propose PATE, a method for using prompt-based
training for aspect term extraction. Second, we show that this method significantly outperforms the
standard pre-trained language model (PLM) fine-tuning approach in few-shot scenarios.

2 Related Work

The most active line of ATE related work is based on token-level supervised learning (Liu et al., 2015;
Xu et al., 2018, 2019; Karimi et al., 2021). Although they achieve promising results, these methods
require large amounts of labeled data, especially when training large transformer models.

1https://github.com/IntelLabs/aspect-extraction
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Figure 1: PATE training: First, as-
pect candidates are extracted and
are associated with labels accord-
ing to the training set, then, yes/no
cloze questions are concatenated
and a PLM is trained to minimize
the cross entropy loss (LCE) from
the correct answer.

There are several lines of work that address labeled data scarcity
in ATE. One approach employs domain adaptation techniques,
namely, utilizing existing labeled data from one domain to adapt
a model to another domain. Ding et al. (2017) proposed using
domain-invariant dependency-based aspect extraction rules as
auxiliary supervision for an RNN model. However, this method
depends on the quality of manually-crafted rules. Wang and
Pan (2019) addressed this issue by designing a dependency pre-
diction task that encodes dependency relations into the hidden
representations of words. Pereg et al. (2020) proposed to utilize
external dependencies, injected into the self-attention mecha-
nism during fine-tuning of pre-trained Transformers. Lekhtman
et al. (2021) introduced a pivot-based method for pre-training
contextual word embeddings. Another line of work addresses
zero-shot ATE. Recently, Shu et al. (2022) demonstrated that
ATE can be successfully presented as a natural language in-
ference task, achieving state-of-the-art results for zero-shot.
However, the accuracy degradation compared to supervised
methods is significant.

Recently, prompt-based few-shot methods have demonstrated
impressive results in sequence classification tasks. A well
known example is Pattern Exploiting Training (PET) (Schick
and Schütze, 2021a,b) which leverages patterns for few-shot
learning, by reformulating natural language tasks as cloze-style
questions. ADAPET (Tam et al., 2021) improves PET by mod-
ifying its objective to provide denser supervision during fine-
tuning, alleviating the need for task-specific unlabeled data.

As opposed to other ATE methods, our approach does not rely
on specialized neural architecture or handcrafted rules. Instead,
we build upon the inherent token prediction capability of PLMs.
Our work employs a preliminary step of detecting potential
aspects within the text, and a cloze pattern generation step for filtering out non-aspect candidates.

3 PATE

Figure 1 is an illustration of PATE training process. First, aspect candidates are extracted from the
input sentence. The candidates are associated with labels according to the training set. Next, yes/no
cloze questions and their answers, aimed to filter out non-aspect candidates, are generated. Each
cloze question is then concatenated to the input instance and finally, a PLM is fine-tuned to minimize
the loss between the predicted answer and the correct answer.

Aspect Candidate Extraction. Cloze question patterns were shown to be effective in few-shot
sequence classification (Schick and Schütze, 2021a; Tam et al., 2021; Zheng et al., 2022). However,
the goal in token classification is more fine-grained. Our approach for exploiting cloze questions in
ATE is based on introducing a pre-process mechanism that extracts aspect candidates. The aspect
candidates are represented as text spans, that are of higher probability to function as aspects based on
the context in which they appear. For this purpose we implement two aspect candidate extraction
(ACE) methods. The first ACE method follows previous work that use noun and noun phrase detection
for aspect candidate extraction (Hu and Liu, 2004b; Tulkens and van Cranenburgh, 2020). Along
this line, we use a simple rule-based noun phrase extractor, based on patterns of part-of-speech tags
(Subhashini and Kumar, 2010; Chakraborty et al., 2016) for extracting aspect candidates. Formally,
the output is denoted by TC = {xi, asp

cand
i } where xi is a sentence and aspcandi is a noun phrase

that constitutes an aspect candidate in the context of xi.

In order to complement the first ACE method with non-noun aspect candidates, we introduce a second
ACE method. This method, based on a neural network, employs a PLM that is fine-tuned using
the available labeled data for the ATE task, in a similar fashion to the baseline implementation (see
Section 4). Then, this PLM is used to extract aspect candidates, generating Tneu = {xi, asp

neu
i }. At
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Figure 2: F1 as a function of training set size N of PATE and the baseline model on R, L and D

inference time, the final output of the ACE step is produced by unifying both ACE methods, denoting
TC = TC ∪ Tneu = {xi, asp

cand
i }.

Training Set Generation. Given a small gold set of labeled examples TG = {xi, asp
g
i } where

xi is a sentence and aspgi is a gold aspect in the context of xi, and a set of examples containing
aspect candidates TC , we generate a training set T by unifying the examples from TG and TC such
that T = TG ∪ TC = {xi, aspi, yi} where xi is a sentence, aspi is a span of text within xi, and
yi ∈ (0, 1) indicates whether aspi is an aspect (yi = +1) or a non aspect (yi = −1). We set yi to be
+1 for all the examples in TG and set yi to be −1 for all the examples that are not in the gold training
set. Formally:

yi =

{
+1 aspi ∈ TG

−1 aspi ̸∈ TG

Pattern Generation for Aspect Candidate Filtering. Given an input sentence x and a span
of text asp in x, our goal is to predict whether asp is an aspect (y = +1) or not (y = −1)
in the context of x. For this purpose we devise a pattern-based objective via a function P
that inputs a sentence x and a span of text asp, and outputs a sentence P (x, asp) that contains
a yes/no question and exactly one mask token. We then define a verbalizer v that maps be-
tween the label y of (x, asp) and a word in the PLM vocabulary, namely we set v = "Yes" if
(y = +1) which indicates that asp is indeed an aspect, and set v = "No" if (y = −1) which in-
dicates non aspect. For example, given the following input pair: (x, asp) = (The dessert was
amazing, dessert), The task is redefined as concatenating to x a question asking whether the
most likely choice in the masked position regarding asp (dessert) is "Yes" or "No", denoting:
P (x, asp) = The dessert was amazing. Does the review focus on dessert? __

Training and Inference. For each triplet (x, asp, y) in training set T , we generate a pair (p, v)
where p = P (x, asp) and v is the label verbalizer. We adapt the score for label y given input x
generated by a PLM for a masked token defined by Schick and Schütze (2021a,b) to incorporate asp,
denoting:

SP ,v(y|(x, asp)) = PLM(v(y)|P (x, asp)) (1)

We then use the cross entropy between the softmaxed probability distribution of Sp(y|(x, asp)) and
the true distribution of the training example summed over all the training examples {xi, aspi, yi}
in T to fine-tune the PLM. Similarly, at inference time, Equation 1 is used to classify candidates
as aspects/non-aspects by calculating their yes/no verbalizer scores. Following studies that show
benefits of continued pretraining (CPT) of PLMs in general (Howard and Ruder, 2018; Gururangan
et al., 2020) and in few-shot setups (Schick and Schütze, 2021a), we use unlabeled examples from
the domain of the labeled data to train the PLM with an MLM objective, prior to fine-tuning.

4 Data and Experiments

Following previous ATE work, we conduct experiments on datasets of customer reviews from three
different domains: Restaurant (R), Laptop (L) and Device (D). R includes restaurant reviews from
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SemEval 2014 (Pontiki et al., 2014) and SemEval 2015 (Pontiki et al., 2015). L includes laptop
reviews from SemEval 2014, and D is provided by Hu and Liu (2004a) and contains reviews of five
different digital products.

Systematically evaluating few-shot performance can be challenging, as fine-tuning using small
datasets may incur instability (Dodge et al., 2020; Zhang et al., 2021), and results may change
dramatically given different random data selections. Thus, we adopt a rigorous framework for

N P0 P1 P2 P3

8 54.6 ± 2.7 53.3 ± 6.4 53.6 ± 2.6 51.3 ± 6.2

16 60.2 ± 1.1 62.2 ± 0.8 62.8 ± 1.4 61.4 ± 0.5

32 65.8 ± 1.1 64.4 ± 0.9 64.4 ± 0.9 62.7 ± 1.3

64 69.9 ± 1.2 68.7 ± 0.5 69.4 ± 1.1 70.0 ± 0.5

100 72.0 ± 0.3 70.2 ± 1.3 70.8 ± 1.2 70.7 ± 1.9

200 74.1 ± 0.7 73.2 ± 0.9 74.1 ± 0.5 74.1 ± 1.1

1000 78.0 ± 0.5 78.2 ± 0.5 78.0 ± 0.4 78.2 ± 0.8

Table 1: Average F1 and standard deviation for
PATE on Laptops dataset using different cloze-
patterns, for various training set sizes N

training and evaluating few-shot methods, pro-
posed by Zheng et al. (2022). Each dataset is
first split into Dtest (1/3) and Dtrain (2/3).

To tune the model for N labeled training ex-
amples, we select N examples from Dtrain, de-
noted DN . Then, we apply a multi-split strategy,
wherein DN is randomly divided into equally
sized Dk

train and Dk
dev . This division process is

repeated K = 5 times.

Given a hyper-parameter space H , for each h ∈
H and k ∈ 1...5, we train PATE on Dk

train

using h and evaluate it on Dk
dev. Let h∗ be the

hyper-parameter set that achieves the best mean
F1-score across all k splits. To test the model performance, we train it using h∗ on DN , and evaluate
on Dtest. Finally, we report the mean F1-score for this test over 3 random seeds. The selected
h∗ per dataset appear in Table 6 in Appendix A.2. CPT always uses the full Dtrain (unlabeled),
containing 2,565, 3,896 and 2,557 examples for L, R and D, respectively. We adopt the HuggingFace
implementation2 of RoBERTa-base (Liu et al., 2019) for both PATE and the baseline.

Baseline Previous work in low-resource ATE, including those mentioned in Section 2, are applicable
to domain-adaption and zero-shot setups; however, they do not apply to few-shot scenarios like ours.
Hence, our standard supervised training baseline is based on the common approach of fine-tuning
a PLM for ATE. Specifically, we formulate the ATE task as a token classification task (Poria et al.,
2016; Xu et al., 2018) and fine-tune the RoBERTa-base model with a token classification layer using
the few-shot labeled data. For fair comparison, we tune the baseline hyper-parameters in the same
manner performed for PATE.

5 Results

N Method L R

16
Baseline 40.0 ± 7.3 51.9 ± 0.9

PATE 60.2 ± 1.1 62.0 ± 1.2

– n-ACE 56.1 ± 3.7 55.1 ± 5.2

– CPT 51.7 ± 4.4 56.5 ± 4.7

64
Baseline 62.2 ± 1.6 65.9 ± 1.1

PATE 69.9 ± 1.1 69.3 ± 1.6

– n-ACE 64.2 ± 0.9 64.2 ± 1.3

– CPT 65.5 ± 3.6 65.6 ± 1.1

128
Baseline 68.0 ± 2.2 69.6 ± 0.4

PATE 72.4 ± 0.4 69.7 ± 1.9

– n-ACE 65.3 ± 0.1 66.7 ± 0.3

– CPT 71.5 ± 1.1 68.4 ± 1.7

Table 2: PATE ablation test showing aver-
age F1 and standard deviation for Laptop and
Restaurant datasets on three training set sizes
N , and when excluding n-ACE or CPT.

Figure 2 shows a comparison between PATE and the
baseline for different values of N ; PATE significantly
outperforms the baseline in small N values. For ex-
ample, for N = 8, PATE outperforms the baseline
by 16.6, 30.5, and 13.3 average F1 on R, L and D,
respectively. As N increases, the performance gains
decrease; however, PATE outperforms the baseline
for N ≤ 1000 in R and for N ≤ 200 in L. De-
tailed results are shown in Tables 3-5 in Appendix
A.1. These results highlight the model’s ability to
better leverage the inherent knowledge of the PLM,
by using cloze-style patterns during training.

We evaluated PATE using four different cloze pat-
terns. We chose simple and intuitive patterns which
requires no expertise in prompt selection. Namely,
we ask a Yes/No question about whether some can-
didate in the sentence is an aspect or not (see details
in Appendix A.3). The results in Table 1 show that
pattern selection has a very small effect on the per-
formance and there was no single prominent pattern.

2https://github.com/huggingface/transformers
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In fact, using the null-pattern P3, composed only of the candidate aspect followed by a masked
Yes/No token, yielded F1 comparable to other patterns. This demonstrates the robustness of PATE
for pattern selection.

To study the effect of the neural ACE and CPT on the model’s performance, we conducted ablation
experiments across three values of N . The results, in Table 2, show that both steps hold a significant
contribution, especially for N ≤ 64. CPT is most valuable at N = 16, and its contribution decreases
as N increases. The gains from neural ACE are significant across all tested values for N .

6 Conclusion

We propose a method for using prompt-based training in the form of cloze questions for few-shot
token classification applied for aspect term extraction. We demonstrate that this method outperforms
the standard supervised training baseline in few-shot setups and is robust to pattern selection. This
method better handles real-world scenarios where labeled data is scarce.
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A Appendix

A.1 Full results

We provide average precision, recall and F1 scores (and their standard deviations), per dataset, in
Tables 3-5. The overall relative advantage in recall can be attributed in part to the ACE step, due to
its two different strategies for discovering aspect candidates (POS features and token classification)
which may complement each other.

N Method P R F1

8 Baseline 53.1 ± 8.8 31.1 ± 9.3 37.6 ± 7.1
8 PATE 53.6 ± 5.9 56.7 ± 8.1 54.3 ± 0.3

16 Baseline 47.6 ± 1.6 57.2 ± 4.0 51.9 ± 0.9
16 PATE 54.7 ± 3.9 72.2 ± 5.0 62.0 ± 1.2

32 Baseline 57.4 ± 5.3 61.5 ± 9.3 58.6 ± 3.8
32 PATE 61.1 ± 5.7 70.2 ± 8.7 64.7 ± 2.3

48 Baseline 59.5 ± 4.2 68.6 ± 1.0 63.6 ± 2.1
48 PATE 64.2 ± 2.0 73.0 ± 2.8 68.3 ± 1.9

64 Baseline 62.0 ± 1.4 70.4 ± 2.0 65.9 ± 1.1
64 PATE 67.1 ± 1.5 71.7 ± 1.4 69.3 ± 0.2

80 Baseline 64.7 ± 2.7 69.0 ± 3.1 66.7 ± 0.5
80 PATE 68.1 ± 0.7 70.7 ± 3.1 69.3 ± 1.5

100 Baseline 63.6 ± 2.2 72.4 ± 1.3 67.7 ± 0.7
100 PATE 67.0 ± 1.9 71.7 ± 1.1 69.2 ± 1.4

200 Baseline 68.8 ± 0.7 74.4 ± 0.4 71.5 ± 0.5
200 PATE 70.7 ± 1.5 75.1 ± 1.6 72.8 ± 0.8

1000 Baseline 74.7 ± 1.0 76.5 ± 0.8 75.6 ± 0.2
1000 PATE 74.4 ± 0.5 77.8 ± 0.3 76.1 ± 0.3

Table 3: Average Precision (P), Recall (R), F1 and standard deviation for the baseline and PATE on
Restaurant dataset for various training set sizes N .

A.2 Hyper-parameters

Hyper-parameter tuning was performed as described in Section 4. For the baseline, we try values
in the range [1e−5, 3e−5] for the learning_rate, [400, 2000] for the number of training steps
(max_steps) and [8, 16] for the batch size. For PATE, the search values are:
max_steps ∈ {700, 1000},
learning_rate ∈ {2e−5, 3e−5},
neu_ace_max_steps ∈ {500, 1000},
neu_ace_learning_rate ∈ {2e−5, 3e−5},
CPT_max_steps ∈ {1000, 2000},

7

https://doi.org/10.18653/v1/P18-2094
https://doi.org/10.18653/v1/P18-2094
https://openreview.net/forum?id=cO1IH43yUF
https://openreview.net/forum?id=cO1IH43yUF
https://aclanthology.org/2022.acl-long.38
https://aclanthology.org/2022.acl-long.38


N Method P R F1

8 Baseline 34.7 ± 6.4 19.5 ± 5.2 24.1 ± 3.5
8 PATE 55.9 ± 9.7 55.7 ± 8.0 54.6 ± 2.7

16 Baseline 38.3 ± 8.4 42.6 ± 7.5 40.0 ± 7.3
16 PATE 59.4 ± 5.5 62.5 ± 7.8 60.2 ± 1.1

32 Baseline 51.1 ± 0.6 54.8 ± 3.0 52.8 ± 1.7
32 PATE 63.4 ± 2.3 68.4 ± 1.8 65.8 ± 1.1

48 Baseline 54.2 ± 0.9 64.0 ± 1.9 58.7 ± 1.0
48 PATE 65.8 ± 1.5 71.6 ± 3.5 68.5 ± 1.5

64 Baseline 60.4 ± 2.5 64.2 ± 1.5 62.2 ± 1.6
64 PATE 67.7 ± 3.7 72.7 ± 3.6 69.9 ± 1.2

80 Baseline 64.0 ± 0.6 65.4 ± 2.9 64.6 ± 1.3
80 PATE 68.7 ± 2.1 72.4 ± 3.1 70.4 ± 0.9

100 Baseline 64.8 ± 1.8 67.3 ± 3.7 65.9 ± 1.0
100 PATE 70.0 ± 1.5 74.1 ± 1.6 72.0 ± 0.3

200 Baseline 71.2 ± 0.6 72.8 ± 2.2 72.0 ± 1.4
200 PATE 72.8 ± 1.2 75.4 ± 0.2 74.1 ± 0.7

1000 Baseline 76.6 ± 0.6 81.3 ± 0.3 78.9 ± 0.2
1000 PATE 76.0 ± 0.6 80.1 ± 1.6 78.0 ± 0.5

Table 4: Average Precision (P), Recall (R), F1 and standard deviation for the baseline and PATE on
Laptop dataset for various training set sizes N .

N Method P R F1

8 Baseline 26.8 ± 24.8 4.2 ± 3.8 7.2 ± 6.7
8 PATE 31.7 ± 6.8 16.2 ± 4.5 20.5 ± 3.4

16 Baseline 38.6 ± 11.1 17.3 ± 6.3 23.1 ± 6.1
16 PATE 38.0 ± 11.3 23.1 ± 2.7 27.9 ± 4.2

32 Baseline 35.1 ± 8.5 28.8 ± 10.4 31.1 ± 8.8
32 PATE 41.4 ± 4.5 26.8 ± 8.3 32.0 ± 7.2

48 Baseline 41.1 ± 8.7 30.7 ± 3.9 34.9 ± 5.0
48 PATE 41.6 ± 2.5 32.4 ± 6.7 36.2 ± 5.1

64 Baseline 45.9 ± 3.2 33.3 ± 0.5 38.5 ± 0.9
64 PATE 45.3 ± 0.1 35.0 ± 4.8 39.3 ± 3.1

80 Baseline 47.0 ± 3.0 36.8 ± 6.1 40.8 ± 3.0
80 PATE 50.7 ± 1.4 40.7 ± 4.5 45.0 ± 3.3

100 Baseline 47.9 ± 1.4 41.5 ± 4.2 44.3 ± 1.7
100 PATE 48.7 ± 2.8 40.8 ± 1.7 44.3 ± 0.9

200 Baseline 55.5 ± 5.1 45.7 ± 3.2 50.1 ± 3.8
200 PATE 52.2 ± 4.5 53.3 ± 1.6 52.6 ± 1.6

1000 Baseline 56.0 ± 1.2 60.2 ± 1.6 58.0 ± 1.3
1000 PATE 53.5 ± 1.7 60.4 ± 1.8 56.7 ± 0.6

Table 5: Average Precision (P), Recall (R), F1 and standard deviation for the baseline and PATE on
Device dataset for various training set sizes N .
CPT_learning_rate∈{1e−5, 2e−5, 3e−5}. We provide the selected parameters for each setup, in
Table 6. Note that the batch size is always 8 where not specified.

A.3 Patterns

We tested cloze patterns with varying content words, word order and length. Table 1 shows results
for P0 – the pattern used for the primary tests – as well as 3 additional patterns P1,P2,P3. P3 is
a null-pattern, that is, it does not contain any tokens other than the candidate aspect followed by a
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masked Yes/No token. Given an input sentence xi and a span of text aspi in xi, these are the patterns:
P0(x, asp

c) = x. So, does the review in the previous sentence focus on aspc? __
P1(x, asp

c) = x. Is aspc an aspect? __
P2(x, asp

c) = x. So, is the review about aspc? __
P3(x, asp

c) = x aspc __
Baseline PATE

Parameter L R D L R D

adam_epsilon 1e-8 1e-8 1e-8 1e-8 1e-8 1e-8
max_seq_length 128 128 128 128 128 128
mlm_probability – – – 0.15 0.15 0.15
learning_rate 3e-5 3e-5 3e-5 2e-5 3e-5 2e-5
per_device_train_batch_size 16 16 16 8 8 8
max_steps 600 800 1000 700 1000 1000
neural_ace_max_steps – – – 500 1000 500
neural_ace_learning_rate – – – 2e-5 2e-5 2e-5
CPT_max_steps – – – 1000 2000 2000
CPT_learning_rate – – – 2e-5 3e-5 2e-5

Table 6: Hyperparameters for baseline and PATE per dataset
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