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Abstract

A large number of natural language processing (NLP) datasets contain crowd-
sourced labels. Training set labels are usually generated using majority vote from
individual rater’s labels, which discards a significant amount of information. This
paper focuses on improving data-efficiency when training a model for "marginally
abusive" Tweet classification. We compare majority vote to two families of alterna-
tive methods, changing the training process in two different steps: (1) aggregating
individual labels using weak supervision to improve the quality of labels for model
training, and (2) predicting individual labels using the multi-rater models proposed
by Davani et al. [2022]. We find that majority vote is a strong baseline. Dawid-
Skene [Dawid and Skene, 1979] and multi-rater models are not significantly better
than the baseline, and the latter tend to be more susceptible to overfit. Finally,
we also identify a number of practical considerations for the practitioner, such as
setting a minimum number of labels per rater, or preferring soft to hard labels.

1 Introduction

Online content moderation is an important application of NLP models, whose goal is to identify
e.g. potentially harmful, misleading or spammy content. Depending on the severity level of the
content, the predictions can be used to decide if it should be removed, or its visibility diminished.
On platforms such as Twitter, the number of necessary decisions precludes to rely exclusively on
human agents. Thus, machine learning (ML) models for identifying misleading information or toxic
content are a growing area of research e.g. [Zellers et al., 2019, Juuti et al., 2020, Pavlopoulos et al.,
2020]. In particular, the identification of marginally abusive behavior, that is, content which falls
in the margin, is a critical problem. Identifying such content makes it possible, for example, to
avoid recommending it to users who do not follow its authors2. It is a difficult problem, due to the
heterogeneity of marginal abuse, and (thankfully) the low frequency of positive labels.

Seminal work [Snow et al., 2008] showed that NLP models can perform as well when trained with
crowdsourced data as with expert-labeled data. Since then, crowdsourced data has been used to solve
supervised NLP tasks ranging from part-of-speech (POS) tagging [Hovy et al., 2014] to abusive
content classification [Davani et al., 2022]. Crowdsourced label variability comes both from sampling
errors, which all tasks are subject to, and task subjectivity, potentially stemming from the ambiguity
of the task itself, or differences in background between the raters [Dumitrache, 2015]. To account for
this, a frequent solution is to use majority vote of crowdsourced labels [Wong and Paritosh, 2022].
This solution is simple, but it discards a significant share of information, such as the individual labels
and their rater ids. This has spurred a large area of research: is it possible to train NLP models more
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data efficiently, i.e., improve downstream model performance by extracting more information from a
given crowdsourced dataset? Background work will be covered in section 2.

This paper focuses on answering the data-efficiency question for the classification of marginally
abusive Tweets: can we leverage individual labels and improve model performance compared to
training on majority votes? In a pragmatic approach to this problem, we compare two families of
methods, either (1) learning aggregation rules from the data - leveraging weak supervision methods,
or (2) modeling individual raters prior to aggregating them, leveraging multi-rater models proposed
by Davani et al. [2022]. Our contributions are the following: (1) we obtained the first comparative
results from weak supervision methods and multi-rater models on marginal abuse classification,
demonstrating majority vote to be a strong baseline; and (2) we make recommendations about
practical considerations for practitioners working on similar problems regarding e.g. rater filtering or
the usage of soft labels.

The rest of the paper is organized as follows: related works are presented in section 2. Our dataset
and methods are explained in section 3. Finally, results are presented in section 4, prior to discussing
them in section 5. Further experimental results are described in Appendix C and D.

2 Related work

Crowdsourced data for NLP problems As mentioned in the introduction, it is now standard to train
NLP models from crowdsourced data, prior to aggregating labels in some way [Difallah and Checco,
2021]. A first set of methods uses probabilistic graphical models to estimate an (unobserved) true
label, based on the observed ones (see for example [Paun et al., 2018]). This is in particular the case
for weak supervision methods, of which we will test three standard approaches in this work: Dawid-
Skene [Dawid and Skene, 1979], FlyingSquid [Fu et al., 2020] and Snorkel [Ratner et al., 2017]. We
refer the reader to Appendix A for more details on the three methods, and Zhang et al. [2021] for
more context on weak supervision. Weak supervision methods provide theoretical consistency and
convergence guarantees, proving that accuracy estimators are asymptotically consistent [Chen et al.,
2019, 2021]. More recently, variants of Dawid-Skene have been proposed: Whitehill et al. [2009]
integrate instance difficulty and rater-wise priors into their probabilistic model. Karger et al. [2011]
uses an iterative algorithm to estimate the difficulty of the task and the accuracy of each rater. Sinha
et al. [2018] propose a faster version of Dawid-Skene - up to 8x faster - using a hard version of the
Expectation-Maximization (EM) algorithm.

Another avenue of methods, rather than focusing on estimating label models prior to training,
incorporates it in the training step by designing weighting functions. For example, Plank et al. [2014]
devise an inter-annotator agreement loss which gives higher weights to data points on whose class
the annotators agree. Jamison and Gurevych [2015] try weighting data points with rater agreement,
as well as additionally filtering data with low rater agreements, and only find an improvement
with the latter. Fornaciari et al. [2021] add an auxiliary task to golden label prediction: predicting
the distribution of crowdsourced ones. As an auxiliary loss, they test the Kullback-Leibler (KL)
divergence, the inverse KL divergence, and the cross-entropy loss.

Finally, a last possible option, is to predict individual labels, prior to aggregating them. This is
the idea behind the multi-rater models proposed by Davani et al. [2022], who leverage individual
annotators’ labels by applying multi-label/task learning.

Machine learning for content moderation There has recently been quite a lot of interest for ML
for content moderation. This section will only give a few pointers, as a full review would be out
of scope for this paper. Recent work focuses around two main directions: (i) improving the data
efficiency of such models, and (ii) identifying additional features to text to improve performance. On
the side of using limited labeled data as efficiently as possible, Davani et al. [2022] apply multi-rater
models to hate speech classification. Another example is work from Juuti et al. [2020], who improve
model performance using data augmentation techniques to mitigate toxic data scarcity. Training
multilingual content moderation model is another way to improve their data efficiency, with lower
resource languages benefiting from larger ones [Aluru et al., 2020], while potentially leveraging
a multi-lingual lexicon in addition [Pamungkas and Patti, 2019]. In terms of additional features,
previous work investigate if additional user-level information can improve performance [Wich et al.,

2



2021] - it usually does but can raise potential ethical concerns, or whether adding the context of a
comment improves toxicity classification - Pavlopoulos et al. [2020] find that it doesn’t.

Another important subject, which goes hand in hand with this application of ML, is that of fairness
and ethics: making sure that those models are not biased towards penalizing marginalized groups [Yee
et al., 2022]. Indeed, a large body of work has been published in this direction, and in particular,
about the interplay between crowdsourcing, subjectivity and fairness when designing labeling tasks
for content moderation, e.g. [Aroyo et al., 2019], [Arhin et al., 2021].

3 Data and methods

3.1 Dataset

The overall training dataset contains approx. 380,000 Tweets, with circa 1.9 million individual labels,
sampled between January and May 2022. It contains 9.3% positive examples. The median number of
raters per data point is 5. In the following and when not specified otherwise, labels from raters with
less than 2,000 labels are removed from the training set. The evaluation dataset is a random sample
of approx. 190,000 Tweets, split between validation and test sets chronologically, and covering the
same period. The validation set contains ∼103,000 individual labels with 2.9% positive examples,
while the test set contains ∼86,000 individual labels with 2.5% positive examples. When evaluating
performance, the label for each Tweet is generated using majority voting.

3.2 Methods

Baseline The baseline model is a fine-tuned BERT [Devlin et al., 2018] trained on data with labels
generated using majority voting. In case of a tie, the label is positive.

Weak supervision We choose three off-the-shelf weak supervision methods which are represen-
tative of their family of methods: Snorkel [Ratner et al., 2017], FlyingSquid [Fu et al., 2020], and
Dawid-Skene [Dawid and Skene, 1979]. These three algorithms have distinct assumptions and
solutions. Snorkel and FlyingSquid’s label model assumes the conditional independence of raters
given the true label, while Dawid-Skene assumes their independence. A core step for each method is
estimating an accuracy parameter for each rater. Snorkel estimates accuracy parameters by forcing
conditional independence on the graph structure using gradient descent, while FlyingSquid estimates
accuracy parameters using the method of moments (triplet method). Dawid-Skene relies on the
expectation-maximization (EM) algorithm for accuracy estimations. See Appendix A for a formal
description of algorithms.

In terms of implementation, we use the Wrench package from Zhang et al. [2021]. Once aggregated
labels have been computed for each Tweet, training is performed identically to the baseline.

Multi-rater models Proposed by Davani et al. [2022], multi-rater models are trained to model
individual raters, as opposed to some aggregated/re-weighted labels. The authors propose two similar
models in this paper, named the multi-label and the multi-task models. The difference between the
two lies in the following: given r raters, for each datapoint the multi-label model predicts one output
in {0, 1}r, whereas the multi-task model learns to predict r outputs in {0, 1}. During training, only a
limited number of labels are available per data point. The outputs of absent raters are masked. During
inference, the average of all individual outputs is computed for the final output.

4 Results

4.1 Experimental setup

Experiments compare our baseline, to training on weak supervision labels generated by either of
the three above-mentioned methods, to training one of the two multi-rater models and aggregating
predictions using the majority vote. The prior of positive examples is set to be 0.1 for Snorkel and
FlyingSquid, based on the percentage of positive examples in the training set. Experiments are
conducted in TensorFlow [Abadi et al., 2015].
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In our first set of experiments, we leverage Bayesian hyperparameter optimization as implemented by
Weights & Biases [Biewald, 2020], to optimize the learning rate, the number of epochs, the mini-batch
size and whether to use hard labels and binary cross-entropy, or soft labels and the Kullback-Leibler
(KL) divergence. In those experiments, the number of raters is constant equal to 200. In all the
other experiments, for the sake of speed, the learning rate, mini-batch size and number of epoch are
constant, to observe (2) the effect of varying the number of raters in the training set, and (3) study
variants of weak supervision and multi-rater models.

Table 1: Comparing the performance of majority voting (baseline) with three weak supervision
methods, and two multi-raters models. The best run is selected using the validation set.

Method ROC AUC PR AUC

Baseline 0.9829 0.6854

Snorkel [Ratner et al., 2017] 0.9803 0.6750
FlyingSquid [Fu et al., 2020] 0.9791 0.6597
Dawid-Skene [Dawid and Skene, 1979] 0.9792 0.6861
Multi-label [Davani et al., 2022] 0.9845 0.6818
Multi-task [Davani et al., 2022] 0.9836 0.6756

4.2 Performance of selected methods with hyper-parameter optimization

The result is summarized in Table 1. We can observe that the best method in terms of precision-recall
area under curve (PR AUC) is Dawid-Skene, with 0.6861 PR AUC on the test set. It is closely
followed by the baseline, showing that majority vote performs well in real world settings - performing
better than the two multi-rater models and the other two weak supervision methods. The best method
in terms of ROC AUC is the multi-label approach from Davani et al. [2022]. Training with three
different random seeds, we find that the baseline, Dawid-Skene and the multi-rater approaches do not
have significantly different PR AUC results. See Appendix B for a full discussion on the significance
of those results.

4.3 Impact of filtering out raters with smallest number of labels

Exploratory data analysis showed a correlation between the estimated individual rater accuracy from
any of the three weak supervision methods, and their number of labels (Appendix C). Thus, we
hypothesized that filtering out raters with less labels from the training data could be beneficial for
performance. To test this hypothesis, we varied the number of raters in the dataset as [50, 100, 150,
200, 248] while keeping the other hyper-parameters constant. This corresponds to using [88%, 98%,
100%, 100%, 100%] of the dataset, thus a minimal reduction in dataset size.

The result can be found in Figure 1. We can see that testing different numbers of raters makes sense
in general, as the performance of all methods changes depending on how many top raters are kept.
Interestingly, no method performs best when using the full dataset, suggesting a universal rule of
thumb to filter out a certain amount of least frequent raters. Focusing on PR AUC which is less
saturated, we can see that the baseline, Dawid-Skene as well as the multi-label approach perform best
at 200 raters. Furthermore, both FlyingSquid and Snorkel systematically perform less well than the
baseline over any number of raters. Finally, we can see that multi-rater models perform systematically
better than the baseline. The apparent contradiction with Table 1 can be explained by the fact that the
latter results are hyper-parameter optimized, whereas the former are not. This leads to observe that
multi-rater models tend to overfit the validation set more than the baseline or Dawid-Skene.

4.4 Impact of soft-labels

Previous studies [Jamison and Gurevych, 2015, Fornaciari et al., 2021] found the usage of soft labels
to be beneficial to performance. To test this hypothesis, we compared performance when replacing
hard binary labels and the binary cross-entropy loss, with soft labels and the KL divergence loss. For
majority voting, soft labels are the ratio of positive labels for each Tweet, while weak supervision
methods give soft labels based on weighted voting using each rater’s accuracy parameters. Table 2
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50 100 150 200 250
Number of raters

0.974

0.976

0.978

0.980

0.982

0.984

Baseline
Snorkel
FlyingSquid
Dawid-Skene
Multi-label
Multi-task

(a) ROC AUC

50 100 150 200 250
Number of raters

0.62

0.64

0.66

0.68

0.70

Baseline
Snorkel
FlyingSquid
Dawid-Skene
Multi-label
Multi-task

(b) PR AUC

Figure 1: Impact of the number of raters on performance - test set results

Table 2: Comparing the performance of majority vote and the three weak supervision methods using
soft and hard labels. Test set results

Method Label type ROC AUC PR AUC

Baseline
Hard 0.9829 0.6811
Soft 0.9836 0.6832

Snorkel
Hard 0.9768 0.6491
Soft 0.9793 0.6653

FlyingSquid
Hard 0.9826 0.6645
Soft 0.9817 0.6713

Dawid-Skene
Hard 0.9799 0.6825
Soft 0.9779 0.6837

shows the results. The PR AUC improves for all methods when switching from hard to soft labels:
the improvement goes from less than 0.5% for the baseline and Dawid-Skene, to 2.5% for Snorkel.
The ROC AUC is very little impacted on the other hand.

5 Discussion and perspectives

This paper focuses on improving data efficiency when fine-tuning a large language model for the
classification of marginally abusive Tweets. We tried two different approaches to take advantage of
individual rater’s labels: (1) weak supervision, which estimates each rater’s accuracy solely based on
their rating and that of others; and (2) multi-rater modeling, which predicts individual labels prior to
aggregating them. We observe that contrary to our expectations, majority voting is pretty robust. The
best method - training with Dawid-Skene labels - does not significantly improve over the baseline in
terms of PR AUC (Table 1 and 4). Multi-rater models display a good performance as well, but they
seem more susceptible to overfit.

The performance of majority voting on marginally abusive Tweet classification is consistent with
the experimental results of Wrench [Zhang et al., 2021], where majority voting turned out to be a
strong baseline in many tasks. Its robustness could come from the fact that the gain from leveraging
estimated rater accuracies, are smaller than the error induced by the accuracy estimation. Contrary to
Dawid-Skene, Snorkel and FlyingSquid perform significantly worse than the baseline. Dawid-Skene’s
independence assumption between raters may be more appropriate in our setting, as opposed to the
conditional independence assumption in Snorkel and FlyingSquid.
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Finally, we find that (1) the number of raters in the dataset should be considered a hyper-parameter,
and that filtering out a certain amount of the least frequent ones benefits performance, and (2) soft
labels with a KL loss should generally be preferred to hard ones and the binary cross-entropy loss.

Further experiments on the same problem with the same dataset have shown that our experimental
setup is in the large data regime: baseline performance is similar when training on 80% of the
training data (data not shown). It is possible that leveraging individual rater’s labels improves
more significantly over majority vote in the scarce data regime. We also tried multiple approaches
to improve multi-rater models, which deteriorated our metrics of interest (see Appendix D). In
future work, it would be interesting to investigate which aggregation/selection method for individual
predictions could improve their performance. Another direction for future work would be to compare
bias severity metrics when training the baseline and multi-rater models on the same dataset: does the
multi-rater approach provide additional benefits in terms of fairness?
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A Formal description of weak supervision methods

In this section, we provide a formal description of the three weak supervision methods we tested:
Dawid-Skene [Dawid and Skene, 1979], FlyingSquid [Fu et al., 2020] and Snorkel [Ratner et al.,
2017].

Problem setup We consider a dataset D = {(xi, yi)}Ni=1, where xi is an input data point and
yi its (unobservable) true label. A pool of rater labels each instance of D. Given a data point
xi, the label of rater j is denoted by λj

i . With a little abuse of notation, denote y ∈ {0, 1}n (or,
{−1, 1}n in FlyingSquid) as the true label vector, and λj ∈ {0, 1}n (or, {−1, 1}n in FlyingSquid)
as rater j’s label vector. Weak supervision methods define a label model, whose main goal is to
estimate the most plausible pseudo-labels given (noisy) labels from a pool of raters, i.e. estimate
ŷ = argmaxy P (y|λ1, · · · , λm). To estimate the true label y, each method estimates the accuracy
of annotators with its own assumption and estimation method (cf. Table 3).

Snorkel The Snorkel algorithm is described in Algorithm 1, and its derivation can be found section
3.1. and 4.3. of Chen et al. [2019]. The gist of this algorithm is to force conditional independence
between raters given a true unobservable label y, based on the graphical model. The optimization
procedure contained in line 5 is guaranteed to converge since the objective function is convex.

Algorithm 1: Snorkel[Ratner et al., 2017], simplified

Input: Class prior p1 = P (Y = 0), p2 = P (Y = 1), labels by annotators λ1, · · · , λm

Output: Estimated pseudo-label probability ŷ = P (λ1, · · · , λm|Y = 1)
1

/* Learn label model µ = P (λi|Y ) */
2 L← [λ1 λ2 · · · λm]
3 P ← diag(p)

4 ΣO ← LTL/n

5 µ̂← argminµ∈Rm×2 ||ΣO − µPµT ||22 + ||µP1− diag(ΣO)||22
6

/* Pseudo-label probability estimation */
7 for i← 1 to n do

8 ŷi ←
exp(

∑m
j λj

i log µ̂j,2 + p2)∑2
k=1 exp(

∑m
j λj

i log µ̂j,k + pk)

FlyingSquid A simplified version of FlyingSquid [Fu et al., 2020] is described in Algorithm 2.
The intuition for this algorithm can be obtained from the section 3.1. of Chen et al. [2019]. The core
statistical assumption is the same as Snorkel’s, that is, conditional independence of rater’s labels given
y. However, FlyingSquid relies on the so-called "triplet" method, which is a method of moments, to
estimate parameters. This solves parameter estimation in linear time with guaranteed consistency.

Dawid-Skene The Dawid-Skene algorithm is described in Algorithm 3. It assumes full inde-
pendence between annotators. The parameter estimation method of Dawid-Skene is a classical

Table 3: Comparison of three weak supervision methods
Method Assumption Accuracy Estimation Method
Snorkel Conditional Independence SGD: Forcing conditional independence
FlyingSquid Conditional Independence Triplets (Method of moments): Solve the system

of equations given by conditional independence
Dawid-Skene (Full) Independence EM: Update estimate of Y and accuracy probability

iteratively
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Algorithm 2: FlyingSquid [Fu et al., 2020], simplified

Input: Class prior p1 = P (Y = −1), p2 = P (Y = 1), labels by annotators λ1, · · · , λm

Output: Estimated pseudo-label probability ŷ = P (λ1, · · · , λm|Y = 1)
1
2 Initialize A = ∅
3 while {1, ...,m} −A ̸= ∅ do
4 Pick a, b, c ∈ {1, ...,m} −A, where a ̸= b, b ̸= c

5 Estimate Ê
[
λaλb

]
← 1

n

∑n
t=1 λ

a
t λ

b
t , Ê [λaλc]← 1

n

∑n
i=1 λ

a
i λ

c
i , Ê

[
λbλc

]
← 1

n

∑n
i=1 λ

b
iλ

c
i

6 Ê [λaY ]←
√
|Ê [λaλb] Ê [λaλc] /Ê [λbλc] |

7 Ê
[
λbY

]
←

√
|Ê [λaλb] Ê [λbλc] /Ê [λaλc] |

8 Ê [λcY ]←
√
|Ê [λaλc] Ê [λbλc] /Ê [λaλb] |

9 A← A ∪ {a, b, c}
10

/* Get canonical parameters from mean parameters */
11 for a← 1 to n do
12 θ̂a ← BackwardMapping(Ê [λaY ])
13 for b← a+ 1 to n do
14 θ̂a,b ← BackwardMapping(Ê

[
λaλb

]
)

15
/* Pseudo-label probability estimation */

16 for i← 1 to n do

17 ŷi ←
1

Z
exp (

∑
j ̸=k θ̂j,kλ

j
iλ

k
i +

∑
j θ̂jλ

j
i + log p2)

Expectation-Maximization, which estimates the true label y and updates the accuracy & error rate
parameters iteratively. The EM algorithms is guaranteed to converge.
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Algorithm 3: Dawid-Skene [Dawid and Skene, 1979], simplified

Input: Class prior p1 = P (Y = 0), p2 = P (Y = 1), labels by annotators λ1, · · · , λm

Output: Estimated pseudo-label probability ŷ = P (λ1, · · · , λm|Y = 1)
1 for i← 1 to n do
2 ŷi ←

∑m
j=1 λ

j
i/m

3 p̂← p
/* Accuracy & error rate table E ∈ Rm×2×2 */

4 Ej,0,0 ←
∑n

i (1− ŷi)(1− λj
i )

5 Ej,0,1 ←
∑n

i (1− ŷi)λ
j
i

6 Ej,1,0 ←
∑n

i ŷi(1− λj
i )

7 Ej,1,1 ←
∑n

i ŷλ
j
i

/* Noremalize E */
8 Ej,0,· = Ej,0,·/(Ej,0,0 + Ej,0,1)
9 Ej,1,· = Ej,0,·/(Ej,1,0 + Ej,1,1)

10 while not converged do
/* E-step */

11 for i← 1 to n do

12 ŷi ←
∏m

j=1 p̂2Ej,1,0(1− λj
i )Ej,1,1λ

j
i

(
∏m

j=1 p̂1Ej,0,0(1− λj
i )Ej,0,1λ

j
i + p̂2

∏m
j=1 Ej,1,0(1− λj

i )Ej,1,1λ
j
i )

/* M-step */
13 Ej,0,0 ←

∑n
i (1− ŷi)(1− λj

i )

14 Ej,0,1 ←
∑n

i (1− ŷi)λ
j
i

15 Ej,1,0 ←
∑n

i ŷi(1− λj
i )

16 Ej,1,1 ←
∑n

i ŷλ
j
i

17 p̂2 ←
∑n

i=1 ŷi/n
18 p̂1 ← 1− p̂2
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B Result significance

Table 4 compares the baseline to our methods of interest, using the average and standard deviation on
three runs with different random seeds. In terms of performance, the rankings between all methods is
identical to that presented in table 1. Additionally, we can see that the baseline, Dawid-Skene and the
two multi-rater approaches do not have significantly different PR AUC results (additional test results
not shown). This further supports the fact that majority vote is a strong baseline.

Table 4: Result significance analysis. The best run is selected using the validation set on one seed,
and the results below present the average (and standard deviation) on three seeds using the same
hyper-parameters. ∗: significantly different from the baseline, two-sided t-test, p-value < 0.05

Method ROC AUC PR AUC

Baseline 0.9824 (0.0014) 0.6889 (0.0048)

Snorkel [Ratner et al., 2017] 0.9798 (0.0008)∗ 0.6751 (0.0033)∗
FlyingSquid [Fu et al., 2020] 0.9803 (0.0015) 0.6580 (0.0021)∗
Dawid-Skene [Dawid and Skene, 1979] 0.9793 (0.0006)∗ 0.6894 (0.0053)
Multi-label [Davani et al., 2022] 0.9840 (0.0011) 0.6826 (0.0097)
Multi-task [Davani et al., 2022] 0.9850 (0.0010) 0.6825 (0.0036)

C Relationship between the number of Tweets a rater labeled and their
accuracy estimates
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Figure 2: Accuracy estimations of weak supervision methods

A crucial result of weak supervision methods is that we can estimate the accuracy of each rater even
without access to true labels. Figure 2 shows the accuracy estimates when using all data. Here, we
can observe that raters with a small number of labeled Tweet counts tend to have lower accuracy,
resulting in the rater number study of subsection ??. This phenomenon can originate from two
possible reasons. The first one is that inexperienced raters may produce noisier labels. The second
possible reason is that the accuracy estimation algorithm can be unstable when the number of data
samples is too low for a given rater.

D Aggregation schemes for multi-rater predictions

As for individual labels, there are multiple ways to aggregate multi-rater model outputs. We tried the
three following schemes:

1. Two-step training: after the multi-rater model has been trained, an additional dense layer is
added after the last layer. This aggregation layer is trained from scratch while the multi-rater
model is frozen.

2. Double loss: this approach also adds a layer after the last one, but trains it at the same time
as the rest of network using the following loss:

L = Lr + βLv
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where L is the total loss, Lr denotes the multi-rater loss and Lv represents the loss of
the final network output against labels generated by majority voting. β is the weighting
hyperparameter for two loss functions. We try β = 0.1, 0.3, 1, 3 and choose it based on the
validation set performance;

3. Weak supervision: we apply one of the three considered weak supervision methods to
aggregate the individual predictions (i.e. Snorkel, FlyingSquid, and Dawid-Skene).

The result is summarized in Table 5. Against our expectation, all three weighting methods yield worse
performance than the majority vote. In particular, the performance from applying weak supervision
methods is particularly low. This could be due to the fact that individual outputs are highly correlated
since they share the BERT backbone. Indeed, when we observed the individual outputs of a multi-rater
model, we saw that most of them were extremely close to 0 or 1.

Table 5: Weighting scheme for multi-rater models
Method Weighting scheme ROC AUC PR AUC

Baseline - 0.9829 0.6811

Multi-label
Majority voting 0.9845 0.7025
Two step training 0.9808 0.6811
Double loss 0.962 0.6848
Weak supervision (Best) 0.9351 0.4597

Multi-task
Majority voting 0.9836 0.6849
Two step training 0.9828 0.6755
Double loss 0.9818 0.6727
Weak Supervision (Best) 0.9350 0.4602
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