
Strategies for Applying Low Rank Decomposition to
Transformer-Based Models

Habib Hajimolahoseini
Ascend Team

Toronto Research Center
Huawei Technologies

habib.hajimolahoseini@huawei.com

Walid Ahmed
Ascend Team

Toronto Research Center
Huawei Technologies

Mehdi Rezagholizadeh
Huawei Noah’s Ark Lab

Vahid Partovinia
Huawei Noah’s Ark Lab

Yang Liu
Ascend Team

Toronto Research Center
Huawei Technologies

Abstract

Low rank decomposition decomposes each fully-connected layer of the transformer
modules into two smaller layers using Singular Value Decomposition. The
state-of-the-art techniques usually apply LRD in a single-shot, where all of the
layers are decomposed simultaneously. In this paper, we propose and compare
different strategies for applying low rank decomposition to compress pre-trained
transformer based models. These strategies include: layer-by-layer and progressive
decomposition. We observe that progressive low rank decomposition, in which the
rank is decreased incrementally results in a higher accuracy after decomposition
comparing to single-shot and layer-by-layer low rank decomposition. Furthermore,
in contrast with many of state-of-the-art compression methods where intensive
pre-training of the compressed model is necessary, we show that progressive LRD
can provide promising performance by compressing the model in the fine-tuning
stage.

1 Introduction

Deep learning models have become larger and larger over the past few years. In some of the
Transformer-based models such as GPT, the number of trainable parameters can reach more than
billions (Radford et al., 2018). Training or finetuning these huge models is a substantially expensive
process with a huge memory consumption (Dean et al., 2012). With a widespread application of
real-time AI models on smartphones and other embedding devices, deploying these over-sized models
on device can be very challenging. Compressing deep learning models is a well-known potential
solution with a set of diverse existing approaches to improve the efficiency of deep learning models
at the cost of compromising their accuracy.

Current model compression algorithms may use different techniques for reducing the number of
parameters or computational complexity including: Low Rank Decomposition (LRD), pruning,
quantization and Knowledge Distillation (KD) (Cheng et al., 2017). In quantization-based techniques,
model weights are approximated using a smaller number of bits e.g. 16-bits, 8-bits or even a single bit
(binary networks) (Wu et al., 2016; Han et al., 2015; Courbariaux et al., 2015; Prato et al., 2019; Bie
et al., 2019). Model pruning is another approach which removes non-important neurons or redundant
connections between them (Lebedev and Lempitsky, 2016; Wen et al., 2016). On the other hand,
KD approaches transfer the knowledge from a larger model (teacher) into a smaller one (student) by

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.



adding and auxiliary loss to imitate softmax outputs or logits from the teacher as a representation of
class distributions (Hinton et al., 2015). The goal is for the student model to mimic the behaviour
of the teacher model and the knowledge could be distilled from the teachers output or from the
intermediate layers (Mirzadeh et al., 2020).

In contrast, LRD techniques decompose each layer of DNNs using a tensor or matrix factorization
method. LRD can be applied to both fully-connected and convolutional layers, using a matrix or
tensor factorization technique, respectively. One advantage of LRD methods is that they do not need
heavy pre-training because they start from a large pre-trained model to initialize the compressed
model. This is in contrast to the layer truncation technique where we should train the compressed
model from scratch. Therefore when using LRD, a few fine-tuning steps are enough to recover most
of the accuracy drop.

However, it is worth mentioning that when using LRD for large compression factors, the
approximation of the original weights of the compressed model becomes very poor and thus
recovering the accuracy through fine-tuning becomes very difficult. Progressive or layer-by-layer
LRD (Hajimolahoseini et al.) is a potential way of addressing this issue. In layer-by-layer LRD, only
a portion of the layers are decomposed at each round, followed by a fine-tuning step Gusak et al.
(2019). In progressive LRD, compression is applied in small steps iteratively, therefore in each step,
the compressed model is an approximation of the previous model and thus has a better initialization
point on the loss surface (Hajimolahoseini et al.).

Although prior arts (Mao et al., 2020) have used LRD for compressing the large transformer-based
models, this technique has only been used and studied in a single-shot setup, in which all of the
layers are decomposed at once and the model is then fine-tuned. To our knowledge, there is no study
for comparing the advantages and disadvantages of different strategies including layer-by-layer and
progressive decomposition when applied to transformer-based models. In this paper, we apply
LRD with different strategies to investigate their performance on the extreme compression of
Transformer-based models.

2 Low Rank Decomposition

Transformer modules of the NLP models include feed forward and multi-head attention modules,
in which the trainable blocks are fully-connected (FC) layers (Vaswani et al., 2017). The FC layers
have a 2D weight matrix W of size (C, S), where C and S represent the number of input and output
features, respectively. Suppose that the input to the FC layer is a two dimensional tensor X of size
(B,C), where B and C are the batch size and the number of input features, respectively. The FC
layer will multiply the input tensor X with its weight matrix and deliver the output Y of shape (B,S)
through Y = XW. In most NLP models, the dimensions of FC layers could be so large that their
weight matrix includes millions of parameters only in a single FC layer.

The rank of matrix W can be interpreted in different ways, as the number of its linearly independent
columns or rows sometimes even the condition index, condition number, normalized trace or
determinants are used as proxy to the rank. The low rank approximation of matrix W is an
optimization problem which minimizes the difference between W and its low rank version. In
terms of Singular Value Decomposition (SVD), this optimization problem has an analytical solution
as follows (Van Loan, 1987): Assume that the weight matrix W ∈ IRC×S is decomposed using SVD
as follows

W = UΣV⊤ =

r∑
i=1

σiuiv
⊤
i , (1)

where U ∈ IRC×C and V ∈ IRS×S are the orthogonal matrices and Σ ∈ IRC×S is a diagonal
rectangular matrix containing the singular values σi > of W of rank r. In (1), if we only use the first
R terms of the summation, the resulted matrix W′ would be an approximation of W with a lower
rank R < r:

W′ =

R∑
i=1

σiuiv
⊤
i = U′Σ′V′⊤ (2)

where U′ ∈ IRC×R and V′ ∈ IRS×R are the new orthogonal matrices and Σ′ ∈ IRR×R is the new
diagonal rectangular matrix. Therefore, the low rank estimation problem could be explained as the

2



following minimazation
min

rank(X)≤R
∥W −X∥2 = ∥W −W′∥2 . (3)

According to (2), a QR-type reconstruction of W′ is possible multiplication the following two
matrices

W′ = W0W1, W0 = U′
√
Σ′, W1 =

√
Σ′V′⊤ (4)

where W0 ∈ IRC×R and W1 ∈ IRR×S, and
√
Σ is a diagonal of square root of singular values

√
σi.

It is clear that if we replace the FC layer W with two consecutive FC layers W0 and W1, the number
of parameters could shrink significantly depending on the rank R.

3 Layer-by-Layer Decomposition

Different strategies can be used for applying LRD to a deep learning model. In contrast with applying
a single shot LRD to all layers of the model at the same time, one alternative is to do it layer by
layer. In this strategy, we apply LRD only to a subset of FC layers in the model. The new model is
then finetuned for some number of epochs, before the LRD is applied to the next subset of layers.
This process is repeated until all of the layers are decomposed. For transformer-based models, we
decompose all of the FC layers inside each of the transformer modules together. For example, if
the model consists of 12 transformer module, the LRD could be applied in at most 12 steps using
layer-by-layer method.

4 Progressive Decomposition

In progressive LRD, we use a rank selection approach in which, we start from a lower compression
ratio and apply low rank decomposition to the entire model altogether (just like the single-shot
method). The model is then fine-tuned for some epochs in order to recover the accuracy. The rank R
is decreased incrementally in the next steps so that we have a higher compression ratio. This process
is repeated until the desired compression ratio is achieved for the model. Starting from the second
compression step, we only decompose the second decomposed layer of previously decomposed
layers and multiply them so that it results in two decomposed layers again. This way, the number of
layers will not increase again in the next stages of decomposition as we use matrix multiplication for
merging the newly generated weight matrices in order to keep the number of layers the same as the
first stage of LRD. This process is shown in Fig. 1.

Figure 1: Progressive decomposition scheme

5 Experimental Results

In order to compare different strategies for applying LRD, we use the vision transformers model
known as ViT as our baseline Dosovitskiy et al. (2020). We use the pre-trained weights of
ImageNet-21k dataset for initialization and then fine-tune on CIFAR-10 and CIFAR-100 for 12
epochs. In the single-shot cases, we apply LRD with 16× compression ratio to all of the feed forward
layers, resulting in total compression ratio of 2.63× for the ViT model. For layer-by-layer case,

3



we decompose 25% of the feed forward layers of the ViT model at each compression step with a
compression rate of 2×. The resulting model is then fine-tuned for 3 epochs. This process is repeated
for the next 25% of the model (4 times) until the entire model is decomposed. In the progressive
case, all of the feed forward layers are decomposed with 2× compression ratio and then finetuned
for 3 epochs. This process is repeated 4 times untill the feed forward layers are compressed by 16×,
resulting in the overall compression of 2.63× for the ViT model. The results are reported in Table 1.

Table 1: Experimental results for ViT model decomposed LRD using different strategies including
single-shot, layer-by-layer and progressive LRD. The model is pretrained on ImageNet-21k and
finetuned on CIFAR-10 and CIFAR-100 datasets.

Method # LRD Steps Comp Ratio CIFAR-10 Top-1 (%) CIFAR-100 Top-1 (%)
ViT (Org) 0 1× 98.76 92.95
Single-Shot 1 2.63× 94.53 87.09
Layer-by-Layer 4 2.63× 95.36 87.51
Progressive 4 2.63× 96.01 88.62

As seen in Table 1, the progressive strategy shows the highest accuracy comparing to the other
methods for both datasets. The layer-by-layer method is also slightly better than single-shot technique.
However, it is worth mentioning that the single-shot technique requires to compile the LRD model
only once whil the other techniques compile the model 4 times in this experiment. Therefore, in the
cases where the total training time has a higher priority comparing to accuracy drop, the single-shot
method could be considered.

Note that we used only 12 epochs for fine-tuning in both CIFAR-10 and CIFAR-100 cases just to
compare different LRD strategies in the same condition. That is the reason for higher accuracy gap
between original and LRD models for CIFAR-100 dataset.

In our next experiment, we use the pre-trained language model GPT2 as our baseline and apply
different compression techniques to it (Radford et al., 2019). The baseline GPT2 model includes 12
Transformer layers. In our experiments, we also include three truncated versions of GPT2 including
DistilGPT2, GPT2-6L and GPT2-4L which are the truncated models with 6, 6 and 4 Transformer
layers, respectively. We use the standard Wikitext-103 benchmark dataset (Merity et al., 2016) in
which the perplexity is the measure of performance. We also apply two versions of LRD method, one
with a single-shot LRD and one with progressive LRD with 2 rounds of 2× compression to the FC
layers inside each Transformer module. The result is reported in Table 2.

Table 2: Experimental results for GPT2 using low rank decomposition v.s. layer truncation on
Wikitext-103 dataset. GPT2-6L and GPT2-4L are the truncated versions of GPT2 with 6 and 4
Transformer layers, respectively. The LRD result is after applying 2 rounds of 2× compression (total
of 4×).

Method # Layers # Params (M) Perplexity
GPT2 (Baseline) 12 124 16.3
Distiltgpt2 6 82 21.1
GPT2-6L 6 82 22.7
GPT2-4L 4 68 30.0
Single Step LRD 12 47 28.2
Progressive LRD 12 31 22.0

As seen in Table 2, the progressive LRD model is able to reach a perplexity close to DistilGPT2, with
only 0.9 unit gap in perplexity, while providing a much higher compression ratio of 4× comparing to
that of truncated versions e.g. DistilGPT2 which is 1.5×. The results for GPT2-4L also shows that if
we truncate 2 more layers of the GPT2 to get a higher compression ratio, we will start to lose the
perplexity significantly (around 9 perplexity units) while the compression ratio will only increase
from 1.5× to 1.84×.

6 Conclusion

In this work, different strategies for applying LRD was proposed and studied, including single-shot,
layer-by-layer and progressive. In contrast to many of state-of-the-art compression methods where

4



intensive pre-training of the compressed model is necessary, progressive LRD can provide promising
performance by compressing the model in the fine-tuning stage. This leads to reduction in the
computation resources needed for obtaining a compressed model for a given task. We show that
using an iterative compression where the deep learning models becomes compressed progressively
can achieve higher compression ratios with less drop in accuracy comparing to single-shot or
layer-by-layer LRD. Future direction could be to apply progressive low rank decomposition to other
architectures based on transformers.

References
Alex Bie, Bharat Venkitesh, Joao Monteiro, Md Haidar, Mehdi Rezagholizadeh, et al. 2019.

A simplified fully quantized transformer for end-to-end speech recognition. arXiv preprint
arXiv:1911.03604.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017. A survey of model compression and
acceleration for deep neural networks. arXiv preprint arXiv:1710.09282.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. Binaryconnect: Training deep
neural networks with binary weights during propagations. In Advances in neural information
processing systems, pages 3123–3131.

Jeffrey Dean, Greg S Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V Le, Mark Z Mao,
Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, et al. 2012. Large scale distributed deep
networks.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Julia Gusak, Maksym Kholiavchenko, Evgeny Ponomarev, Larisa Markeeva, Ivan Oseledets, and
Andrzej Cichocki. 2019. Musco: Multi-stage compression of neural networks. arXiv preprint
arXiv:1903.09973.

Habib Hajimolahoseini, Mehdi Rezagholizadeh, Vahid Partovinia, Marzieh Tahaei, Omar Mohamed
Awad, and Yang Liu. Compressing pre-trained language models using progressive low rank
decomposition.

Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531.

Vadim Lebedev and Victor Lempitsky. 2016. Fast convnets using group-wise brain damage.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2554–2564.

Yihuan Mao, Yujing Wang, Chufan Wu, Chen Zhang, Yang Wang, Yaming Yang, Quanlu Zhang,
Yunhai Tong, and Jing Bai. 2020. Ladabert: Lightweight adaptation of bert through hybrid model
compression. arXiv preprint arXiv:2004.04124.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. 2020. Improved knowledge distillation via teacher assistant. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages 5191–5198.

Gabriele Prato, Ella Charlaix, and Mehdi Rezagholizadeh. 2019. Fully quantized transformer for
machine translation. arXiv preprint arXiv:1910.10485.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training.

5



Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Charles Van Loan. 1987. Matrix computations and signal processing. Technical report, Cornell
University.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning structured sparsity
in deep neural networks. Advances in neural information processing systems, 29:2074–2082.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. 2016. Quantized convolutional
neural networks for mobile devices. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4820–4828.

6


	Introduction
	Low Rank Decomposition
	Layer-by-Layer Decomposition
	Progressive Decomposition
	Experimental Results
	Conclusion

