
DyLoRA: Parameter Efficient Tuning of Pre-trained
Models using Dynamic Search-Free Low Rank

Adaptation

Mojtaba Valipour
David R. Cheriton School of Computer Science

University of Waterloo
mojtaba.valipour@uwaterloo.ca

Mehdi Rezagholizadeh
Huawei Noah’s Ark Lab

mehdi.rezagholizadeh@huawei.com

Ivan Kobyzev
Huawei Noah’s Ark Lab

ivan.kobyzev@huawei.com

Ali Ghodsi
Department of Statistics and Actuarial Science

University of Waterloo
ali.ghodsi@uwaterloo.ca

Abstract

With the ever-growing size of pre-trained models (PMs), fine-tuning has become
more expensive and resource-hungry. As a remedy, low-rank adapters (LoRA)
keep the main pre-trained weights of the model frozen and just introduce some
learnable truncated SVD modules (so-called LoRA blocks) to the model. While
LoRA blocks are parameter efficient, they suffer from two major problems: first,
the size of these blocks is fixed and cannot be modified after training (for example,
if we need to change the rank of LoRA blocks, then we need to train them from
scratch); second, optimizing their rank requires an exhaustive search. In this work,
we introduce a dynamic low-rank adaptation (DyLoRA) solution to address these
two problems together. Our DyLoRA method trains LoRA blocks for a range of
ranks instead of a single rank by sorting out the representation learned at different
ranks during training. We evaluate our solution on different tasks in the GLUE
benchmark using the RoBERTa model. Our results show that we can train DyLoRA
at least 7x faster than LoRA without compromising performance significantly.
Moreover, our models can perform consistently well on a much larger range of
ranks compared to LoRA1

1 Introduction

Pre-training/fine-tuning has become a popular paradigm for solving many tasks in natural language
processing (NLP) [2]–[4] and Computer Vision [5]–[10]. Pre-trained models (PMs) such as pre-
trained language models (PLMs) [2], [4], and pre-trained visual-language models [11]–[14] have
advanced a lot in recent years. With the ever growing size of these pre-trained models, fine-tuning on
downstream tasks become more expensive. There are two category of solutions in this regard: first,
model compression [15], [16]; second, parameter efficient tuning (PET) [17]–[19].

There are many different model compression techniques for PLMs such as matrix factorization [20]–
[22], pruning [23], quantization [24], [25], and knowledge distillation [15], [26]–[31]. There are also
different types of PET techniques in the literature such as low-rank adapters [18], [32]–[34], and
prompt-based techniques [35].

1The code is available at https://github.com/huawei-noah/KD-NLP.

Efficient Natural Language and Speech Processing (NeurIPS 2022).

Frozen
Pretrained

Weights

DyLoRA Parameter UpdatesForward Pass

Figure 1: DyLoRA: The overall diagram of our proposed method. During training, in each iteration,
we sample from a pre-defined random distribution which will help us to truncate the up-projection
and down-projection matrices in the LoRA [1] objective.

Although model compression solutions are well-established in recent years in the literature, using
these techniques usually leads to degrading the model performance more drastically compared to
PET techniques; or in some cases such as knowledge distillation, it requires having a fine-tuned
larger teacher model. Among all PET techniques, low-rank adapters have received a lot of attention
because in contrast to prompt-tuning techniques, low-rank adapters do not add to the sequence length.
Even though there are several well-known low-rank adaptation techniques in the literature such as
[33], compacter [18], LORA [34]; they all suffer from two major common problems: first, it is not
clear how to select the size of their rank (while their performance is very sensitive based on this
rank selection); second, their training is static meaning that if a low-rank model is trained based on a
particular rank size, it will not work well in other rank values (i.e. for any other rank value we need
to train a separate model).

In this paper, we propose a dynamic low-rank adapter (DyLoRA) to alleviate these two problems.
Without losing generality, we focus on LoRA[1] and train LoRA blocks for a range of ranks instead
of a single rank by sorting out the representation learned at different ranks during training.

Our model is able to outperform LoRA in much wider range of ranks without adding to the training
time. Moreover, our technique does not need any extra training for searching across ranks.

The following is a summary of our contributions:

• Dynamic LoRA: On top of LoRA, we developed a new algorithm (DyLoRA) that makes it
dynamic at inference time without incurring extra cost.

• Search-free LoRA: We demonstrate that by making a negligible compromise in performance,
it is possible to avoid the costly search process of choosing the optimal rank for LoRA.

2 Related Work

LORA [34] is a low-rank up-projection/down-projection transformation without any non-linearity
that is applied in parallel to key and value attention matrices. The main benefit of LORA is that the
adapter module after training can be integrated into the original weight matrices of the model, which
in turn can lead to a very efficient inference time. All the available low-rank adapters [18], [33],
[36] in the literature, however, suffer from two major issues: first, finding the best rank size requires
a heavy exhaustive training and search; second, the tuned adapter module works well only with a
particular rank size.

While there has been some efforts in the literature towards dynamic networks such as DynaBERT [37]
and GradMax [38], to the best of our knowledge, this problem for factorized networks and low-rank
adapters is still open. DRONE [16] propose a technique for data-aware low-rank model compression

2

however their approach is not search-free and also it is not dynamic. DynaBERT introduces a
two-stage method to train width and depth-wise dynamic networks. However, DynaBERT requires a
fine-tuned teacher model on the task to train its dynamic sub-networks which is a major limitation
dealing with large PLMs. GradMax is a technique which gradually adds to the neurons of a network
without touching the already trained neurons. But it is not clear how GradMax can be deployed for
reducing the rank-search problem in low-rank adapters. [23] propose a structured pruning technique
which is called factorized low-rank pruning (FLOP). FLOP decomposes weight matrices of a network
into sum of rank-1 components which are regularized during training to gain sparsity. It is worth
mentioning that FLOP aims at compressing the main model and even if it can be used for finding a
good rank in lower-rank representation of full weight matrices, the final low-rank model will not be
dynamic (i.e. it is trained well only for one rank and not a range of ranks, same as LoRA.).

3 Our Method: DyLoRA

In this section, we introduce our solution to get dynamic low-rank adapters that can be trained and
deployed well on a range of ranks instead of a single particular rank (with a fixed training budget).
This flexibility can free us from searching for the best ranks by training the model multiple times.

Without loss of generality, we explain our solution on top of LoRA. In each LoRA module, we
have an up-projection (Wup ∈ Rm×r) and a down-projection matrix (Wdw ∈ Rr×d). Let’s assume
that we would like to train the LoRA module to operate in the range of r ∈ Range[rmin, rmax]
where rmin and rmax can be treated as new hyper-parameters. To make the LoRA module work in
a range of ranks instead of a single rank, we need to ensure that increasing or decreasing the rank
will not significantly hamper the model’s performance. One way to implement such behavior would
be by sorting the information content of different ranks in the training process of LoRA modules.
In this regard, at each training step, we sample b ∼ pB(.), b ∈ {rmin, rmin + 1, ..., rmax} form a
pre-defined categorical distribution (which has a support in Range[rmin, rmax]) and truncate Wdw

and Wup matrices accordingly.

Wdw↓b = Wdw[1 : b, :]

Wup↓b = Wup[:, 1 : b]
(1)

Wdw↓b and Wup↓b are b-truncated versions of Wdw and Wup respectively (see Fig. 1 for the visual-
ization). Moreover, let’s define W b

dw as the bth row of Wdw; W b
up corresponds to the bth column of

Wup.

W b
dw = Wdw[b, :]

W b
up = Wup[:, b]

(2)

Then, the forward pass of this truncated LoRA module during training will be calculated as following:

h = W0x+
α

b
Wup↓bWdw↓bx (3)

For the sake of simplicity, let’s assume that we have only one LoRA module in the network (the
one which is described in Eq. 3). Let’s first consider the regular static loss function (LS) of the
network f(x;Wdw,Wup) with Wdw and Wup tunable parameters for N given input-output pairs
(x, y) = (xi, yi)

N
i=1:

min
Wdw,Wup

LS(x, y;Wdw,Wup) ≜

N∑
i=1

l(f(xi;Wdw,Wup), yi).
(4)

where l(f, y) is a loss function that measures the divergence of network predictions compared with
the target labels. Then, let’s extend the training loss to make the network dynamic considering the
b-truncation process. We can define our dynamic loss function LDY as follows.

LDY
↓b =

N∑
i=1

l(f(xi;Wdw↓b,Wup↓b), yi). (5)

3

In the parameter update phase, it is also possible to update only the bth corresponding row and column
sampled in the truncation phase in order to avoid affecting the lower rank parameters.

W b
dw ←W b

dw − η∇W b
dw
LDY
↓b

W b
up ←W b

up − η∇W b
up
LDY
↓b

(6)

4 Experiments

4.1 LoRA rank selection problem

There is no clear guidance on how to determine the rank for LoRA algorithm. As can be seen from
several experiments in LoRA [1] paper, performance of different ranks does not indicate any clear
trend. We also observe the same problem in the GLUE benchmark. We may argue that theoretically,
the rank with the best performance is always the highest. High ranks, however, introduce additional
parameters into the adaptive process and this might be undesirable. In practice, the most effective
rank differs depending on the task.

4.2 Dynamic low rank adaptation

Model MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg
The average performance over all ranks (1 to 8)

LoRA 56.63 89.15 78.83 32.07 73.57 79.61 64.35 59.64 66.73
DyLoRA 86.21 94.12 88.94 59.12 91.55 88.07 81.27 90.90 85.01

Performance over Rank = 8 only
LoRA (8) 87.09 94.84 87.25 60.82 92.59 90.69 84.84 91.47 86.20
DyLoRA (8) 86.51 94.04 89.46 61.12 91.84 88.73 83.75 91.43 85.86

Table 1: In this table, the task is to find a low-rank adaptation matrix that works with different ranks
at inference time given a fixed budget (training time). In all experiments, the pre-training model is
RoBERTa base [3]. The accuracy (matched and mismatched) for MNLI, Matthew’s correlation for
CoLA, Pearson correlation for STS-B, as well as accuracy for other tasks are reported.

For example, suppose we have a neural network that we wish to deploy on various devices with
different configurations. The use of higher ranks may pose a problem for very sensitive devices
as they have a greater number of parameters. Therefore, we must either train several models with
different configurations, or find the most optimal rank. The cost associated with this is significant,
as even in the setting of LoRA, we are required to find the best rank for each task and each device.
Using DyLoRA, however, one needs to train one model per task and, as our method is adaptive at
inference time, we are able to deploy it according to our needs. In Table 1, we demonstrate the
dynamic properties of DyLoRA. In LoRA, we lose performance when performing inferences for
the lower ranks. This occurs because the model has been trained only for rank 8 during training. In
DyLoRA, we preserve a high level of performance for lower ranks while competing well with LoRA
on rank 8.

5 Conclusion

In this paper, we presented our solution DyLoRA, to address two problems in low-rank adapters
regarding rank selection and making them dynamic. We showed that DyLoRA can select the rank
without requiring multiple re-training and can make LoRA dynamic at inference time. As a result,
we are able to avoid the process of searching for the most optimal ranks for many real-life scenarios.
It has been demonstrated that DyLoRA performance is comparable with LoRA, yet we can support a
wider range of ranks without adding any additional time.

4

References
[1] E. J. Hu, Y. Shen, P. Wallis, et al., “Lora: Low-rank adaptation of large language models,”

arXiv preprint arXiv:2106.09685, 2021.
[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional

transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
[3] Y. Liu, M. Ott, N. Goyal, et al., “Roberta: A robustly optimized bert pretraining approach,”

arXiv preprint arXiv:1907.11692, 2019.
[4] T. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot learners,” Advances in

neural information processing systems, vol. 33, pp. 1877–1901, 2020.
[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.
[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–
778.

[7] A. Howard, M. Sandler, G. Chu, et al., “Searching for mobilenetv3,” in Proceedings of the
IEEE/CVF international conference on computer vision, 2019, pp. 1314–1324.

[8] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of
object detection,” arXiv preprint arXiv:2004.10934, 2020.

[9] M. Chen, A. Radford, R. Child, et al., “Generative pretraining from pixels,” in International
conference on machine learning, PMLR, 2020, pp. 1691–1703.

[10] A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., “An image is worth 16x16 words: Transformers
for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[11] J. Lu, D. Batra, D. Parikh, and S. Lee, “Vilbert: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks,” Advances in neural information processing
systems, vol. 32, 2019.

[12] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, and K.-W. Chang, “Visualbert: A simple and
performant baseline for vision and language,” arXiv preprint arXiv:1908.03557, 2019.

[13] W. Su, X. Zhu, Y. Cao, et al., “Vl-bert: Pre-training of generic visual-linguistic representations,”
arXiv preprint arXiv:1908.08530, 2019.

[14] Q. Xia, H. Huang, N. Duan, et al., “Xgpt: Cross-modal generative pre-training for image
captioning,” in CCF International Conference on Natural Language Processing and Chinese
Computing, Springer, 2021, pp. 786–797.

[15] A. Jafari, M. Rezagholizadeh, P. Sharma, and A. Ghodsi, “Annealing knowledge distillation,”
in Proceedings of the 16th Conference of the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, Online: Association for Computational Linguistics, Apr.
2021, pp. 2493–2504. [Online]. Available: https://aclanthology.org/2021.eacl-
main.212.

[16] P. Chen, H.-F. Yu, I. Dhillon, and C.-J. Hsieh, “Drone: Data-aware low-rank compression for
large nlp models,” Advances in neural information processing systems, vol. 34, pp. 29 321–
29 334, 2021.

[17] N. Houlsby, A. Giurgiu, S. Jastrzebski, et al., “Parameter-efficient transfer learning for nlp,” in
International Conference on Machine Learning, PMLR, 2019, pp. 2790–2799.

[18] R. Karimi Mahabadi, J. Henderson, and S. Ruder, “Compacter: Efficient low-rank hypercom-
plex adapter layers,” Advances in Neural Information Processing Systems, vol. 34, pp. 1022–
1035, 2021.

[19] Y. Mao, L. Mathias, R. Hou, et al., “Unipelt: A unified framework for parameter-efficient
language model tuning,” arXiv preprint arXiv:2110.07577, 2021.

[20] M. B. Noach and Y. Goldberg, “Compressing pre-trained language models by matrix decompo-
sition,” in Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 10th International Joint Conference on Natural Language
Processing, 2020, pp. 884–889.

[21] M. S. Tahaei, E. Charlaix, V. P. Nia, A. Ghodsi, and M. Rezagholizadeh, “Kroneckerbert:
Learning kronecker decomposition for pre-trained language models via knowledge distillation,”
arXiv preprint arXiv:2109.06243, 2021.

5

https://aclanthology.org/2021.eacl-main.212
https://aclanthology.org/2021.eacl-main.212

[22] K. Kumar, P. Passban, M. Rezagholizadeh, Y. Lau, and Q. Liu, “From fully trained to fully
random embeddings: Improving neural machine translation with compact word embedding
tables,” 2022.

[23] Z. Wang, J. Wohlwend, and T. Lei, “Structured pruning of large language models,” arXiv
preprint arXiv:1910.04732, 2019.

[24] C. Tao, L. Hou, W. Zhang, et al., “Compression of generative pre-trained language models via
quantization,” arXiv preprint arXiv:2203.10705, 2022.

[25] G. Prato, E. Charlaix, and M. Rezagholizadeh, “Fully quantized transformer for machine
translation,” in Findings of the Association for Computational Linguistics: EMNLP 2020, 2020,
pp. 1–14.

[26] L. Li, Y. Lin, S. Ren, P. Li, J. Zhou, and X. Sun, “Dynamic knowledge distillation for pre-
trained language models,” arXiv preprint arXiv:2109.11295, 2021.

[27] P. Passban, Y. Wu, M. Rezagholizadeh, and Q. Liu, “ALP-KD: attention-based layer projection
for knowledge distillation,” in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021, AAAI Press, 2021, pp. 13 657–13 665. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/17610.

[28] E. Kamalloo, M. Rezagholizadeh, P. Passban, and A. Ghodsi, “Not far away, not so
close: Sample efficient nearest neighbour data augmentation via minimax,” arXiv preprint
arXiv:2105.13608, 2021.

[29] M. Rezagholizadeh, A. Jafari, P. Salad, P. Sharma, A. S. Pasand, and A. Ghodsi, “Pro-kd: Pro-
gressive distillation by following the footsteps of the teacher,” arXiv preprint arXiv:2110.08532,
2021.

[30] A. Rashid, V. Lioutas, and M. Rezagholizadeh, “Mate-kd: Masked adversarial text, a compan-
ion to knowledge distillation,” arXiv preprint arXiv:2105.05912, 2021.

[31] Y. Wu, P. Passban, M. Rezagholizadeh, and Q. Liu, “Why skip if you can combine: A simple
knowledge distillation technique for intermediate layers,” arXiv preprint arXiv:2010.03034,
2020.

[32] R. Wang, D. Tang, N. Duan, et al., “K-adapter: Infusing knowledge into pre-trained models
with adapters,” arXiv preprint arXiv:2002.01808, 2020.

[33] N. Houlsby, A. Giurgiu, S. Jastrzebski, et al., “Parameter-efficient transfer learning for nlp,” in
International Conference on Machine Learning, PMLR, 2019, pp. 2790–2799.

[34] E. J. Hu, Y. Shen, P. Wallis, et al., “Lora: Low-rank adaptation of large language models,”
arXiv preprint arXiv:2106.09685, 2021.

[35] B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for parameter-efficient prompt
tuning,” arXiv preprint arXiv:2104.08691, 2021.

[36] J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, and G. Neubig, “Towards a unified view of
parameter-efficient transfer learning,” arXiv preprint arXiv:2110.04366, 2021.

[37] L. Hou, Z. Huang, L. Shang, X. Jiang, X. Chen, and Q. Liu, “Dynabert: Dynamic bert with
adaptive width and depth,” Advances in Neural Information Processing Systems, vol. 33,
pp. 9782–9793, 2020.

[38] U. Evci, M. Vladymyrov, T. Unterthiner, B. van Merriënboer, and F. Pedregosa, “Gradmax:
Growing neural networks using gradient information,” arXiv preprint arXiv:2201.05125, 2022.

6

https://ojs.aaai.org/index.php/AAAI/article/view/17610

	Introduction
	Related Work
	Our Method: DyLoRA
	Experiments
	LoRA rank selection problem
	Dynamic low rank adaptation

	Conclusion

