
Pyramid Dynamic Inference:
Encouraging Faster Inference via Early Exit Boosting

Ershad Banijamali Pegah Kharazmi Sepehr Eghbali
Jixuan Wang Clement Chung Samridhi Choudhary

Amazon Alexa AI
Toronto, Canada

{ebanijam,pkkharaz,eghbali,wjixuan,chungcle,samridhc}@amazon.com

Abstract

Large transformer-based models have demonstrated state of the art results on several
Natural Language Understanding (NLU) tasks. However, their deployment comes
at the cost of increased footprint and inference latency, limiting their adoption
to real-time applications, especially on resource constrained devices. In order to
optimize the trade-off between model accuracy, footprint and inference latency,
we propose Pyramid Dynamic Inference (PDI), a scheme that encourages fast
inference by introducing early inference routes in a transformer model, with a focus
on boosting the performance of early exit heads. Owing to the limited capacity of
the earlier transformer layers to extract complex semantics, the exit heads for these
layers typically display high confidence only over easy data samples. PDI aims
to recover this by applying a pyramidal structure to the classification heads that
allows for more confident early inference by injecting stronger classifiers at earlier
layers. It also prevents a significant increase in the model footprint by gradually
shrinking the classifiers as the semantic capacity of the deeper transformer layers
increase. We validate the efficiency of the PDI scheme on the GLUE benchmark,
where we show that PDI consistently outperforms FastBert on both accuracy and
latency.

1 Introduction

Natural Language Understanding (NLU) refers to a collection of tasks to infer semantics from a text
source and is a key technology behind commercial voice assistants (VAs) such as Google Home,
Alexa, Siri and more. Recent advancements in deep learning and in particular the development of
large transformer-based models have led to substantial accuracy increases in a variety of semantic
inference tasks [4, 10, 25]. With the rising usage of VAs because of the everyday convenience they
deliver1, having a single central model is only scalable up to a certain point. Furthermore, more
users are concerned about how their data is processed. Therefore, data privacy and low response
latency become key factors in ensuring a good user experience in addition to accuracy. ‘On-device’
or ‘Edge’ processing has become a key technology for enabling these features [15, 3]. However,
edge processing faces limited computational, memory and storage resources, which is a bottleneck in
deploying complex transformer-based models [13].

Recently, there have been significant efforts to optimize large models such as BERT for on-device use.
Several studies focusing on reducing the model footprint have investigated structure pruning [4, 20],
progressive module replacement [23], quantization [6, 26, 9], knowledge distillation [15, 7, 13]
and matrix factorization approaches [12, 1, 24, 17]. These studies report achieving 35%-87% size

1https://www.statista.com/statistics/973815/worldwide-digital-voice-
assistant-in-use/

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-in-use/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-in-use/


reduction. However, a trade-off is made in accuracy with degradation of up to 10% in some approaches
[12]. Moreover, owing to the computational load of the remaining sparse structure of the compressed
model in standard GPU implementations, the reduction in model parameters does not always translate
to significant inference speedup. Other studies have explored techniques to reduce the runtime latency
by introducing dynamic inference and early exit strategies. Authors in [16] proposed inserting exit
points at different layers of the network and used the entropy of a classification result as a measure
of confidence to route the samples. In [18] authors used the same scheme in a Spoken Language
Understanding (SLU) setup. A fine-tuning strategy is proposed in [22] that extends early exiting to
tasks other than classification. In most existing techniques, an early exit route is chosen only if its
confidence is above a certain threshold. Their major drawback is that since early layers have limited
semantic capacity, they demonstrate low confidence on complex sample. Therefore, enforcing early
exit would result in accuracy drop. FastBERT [8] tries to reduce the accuracy loss by a speed-tunable
model that uses a self-distilling strategy to train the parameters of the intermediate exit heads.

In this work, we aim to provide a better platform of trade-off between accuracy and speedup. We
present Pyramid Dynamic Inference (PDI), a scheme that encourages fast inference while retaining
the model performance by boosting the early exit heads. PDI makes up for the limited capacity of
earlier layers of the model to infer complex semantics by injecting stronger classifiers to boost the
confidence at these layers. As we progress to deeper transformer layers and the network can extract
more complex semantics, PDI gradually shrinks the classifier, thereby preventing the model footprint
from significant increase. Compared to FastBERT our model uses a depth-dependent strategy to
choose the complexity of the exit heads and employs a hybrid loss to train the parameters of these
heads. The main contributions of this paper are: (1) We propose PDI, a novel early exit scheme,
that helps early layers of the model retain confidence in inferring semantically complex samples,
thereby encouraging early exit among a larger input space. (2) We optimize the accuracy, latency and
footprint trade-off by leveraging PDI in conjunction with model compression, demonstrating a viable
transformer model candidate for real-time applications on resource constrained devices.

2 Methodology

2.1 PDI Architecture

Although our approach is architecture agnostic, we choose DistilBERT as our backbone model, which
is an already compressed distilled model, comprised of an embedding layer followed by 6 transformer
layers [13]. The output of each layer hi is defined as:

hi = `i(hi−1). (1)

where `i represents transformer layer i, with h0 being the output of the embedding layer.

In this study, we focus on sequence classification as the final task of our model. To this purpose,
a classifier head is attached to the last transformer layer, which outputs a distribution over the set
of possible class labels. To decrease the average inference time of the model, we add intermediate
exit classifier heads onto different transformer layers. At inference time, if an intermediate classifier
outputs a label with high certainty, further inference is stopped and this output is taken as the final
output of the model. We define the uncertainty of the classifier j, denoted by uj , as the normalized
entropy of its output distribution, pj :

uj =

∑C
c=1 pj(c) logpj(c)

log 1/C
, (2)

where C denotes the number of classes. We exit from layer j if uj < τ , where τ is the certainty
threshold. The larger the value of τ , the more chance of exiting from lower layers, i.e. higher
inference speed. Our approach is based on the observation that intermediate classifiers with higher
accuracy are more likely to output labels with high certainty [8]. Therefore, we improve the accuracy
of intermediate classifiers by using a pyramidal structure for the classifiers: we attach stronger
classifiers at the shallower layers of the transformer and decrease the complexity of the classifiers as
we go deeper in the transformer layers of the model. The assumption behind this approach is that
since earlier layers of the network provide weaker semantic information, a stronger classification
head could help balance such weakness. However, adding bigger intermediate classifiers comes at the
cost of increasing the total number of model parameters and an increased footprint. To compensate

2



Transformer layer 6

Transformer layer 5

Transformer layer 4

Transformer layer 3

Transformer layer 2

Transformer layer 1

Transformer layer 3

Transformer layer 2

Transformer layer 1

Classifier

Classifier

Transformer layer 3

Transformer layer 2

Transformer layer 1

Transformer layer 3

Transformer layer 2

Transformer layer 1

(Teacher)
Classifier

1. Fine-tune backbone 2. Apply Module Replacing (MR) 3. Fine-tune model after MR 4. Train the intermediate (student) classifiers.

Training phases

Intermediate 
(Student) Classifier 2

Intermediate 
(Student) Classifier 1

Classifier

Figure 1: Training phases of the proposed PDI scheme. Parameter update of each module from one phase to the
next is shown through different colors.

for that, we compress the base model even further using module replacing [23]. To do so, we replace
each two transformer layers of DistilBERT with one transformer layer. Our results show that such
compression reduces the model size by ≈ 32%, while retaining 98.9% of DistilBERT performance.
The intermediate classifiers are attached to the layers of the reduced size model.

2.2 Model Training

As shown in figure 1, the training of our proposed PDI scheme consists of four phases. In phase 1,
we fine-tune DistilBERT on the downstream task. We then apply module replacing on the fine-tuned
DistilBERT in phase 2. Phase 3 performs task-specific fine-tuning on the the model from phase 2.
We then use the model from phase 3 as the base model for early exiting, by attaching intermediate
classifiers in a pyramidal structure, while other model parameters are frozen.

We use a hybrid loss function to train the intermediate classifiers: 1) A classification loss with
the ground truth labels as the target, and 2) A self-distillation loss that uses the output of the final
classifier as the target. In this setup, the final classifier serves as the teacher classifier for training the
intermediate (student) classifiers. The hybrid loss is a weighted sum of these two losses:

Ljoint =
M−1∑
j=1

αLCL(pj , c) + (1− α)LKD(pj ,pM ), (3)

where M denotes the number of model layers, c is the one-hot ground truth vector, α is the weight
hyperparameter, LCL is the classification loss, and LKD is the knowledge distillation (KD) loss,
which is defined by the cross-entropy between the outputs of student and teacher classifiers.

3 Experiments

3.1 Datasets

We evaluate our model on the GLUE benchmark [19, 11, 21, 2, 14, 5]. For SST-2, MNLI-m, MNLI-
mm, QNLI and RTE we use accuracy as the classification metric. The F1 and accuracy are used for
MRPC and QQP. Pearson and Spearman correlation are used for STS-B and CoLA is evaluated based
on Matthew’s correlation. The results are reported for the development sets of GLUE.

3.2 Baselines

• DistilBERT: A 6-layer pretrained DistilBERT with a 2-layer fully-connected classifier
fine-tuned on each task, i.e. the model in phase 1 in Fig. 1.

• DistilBERT with Module Replacing (MR): A 3-layer compressed DistilBERT using MR
and fine-tuned on each task, i.e. the model in phase 3 in Fig. 1.

• FastBERT on DistilBERT with MR: A compressed DistilBERT using MR with interme-
diate classifiers at each layer. All the intermediate classifiers of this model have the same
architecture as the final classifier, i.e. a 2-layers fully-connected classifier. Also we only use
self-distillation loss to train the intermediate classifiers.

3



Model τ
CoLA (8.5K) MNLI (393K) MRPC (3.7K) QNLI (105K)

Cls. speedup Cls. speedup Cls. speedup Cls. speedup
DistilBERT - 43.6 0.53× 79.0 0.53× 87.5 0.53× 85.3 0.53×
DistilBERT with MR - 41.8 1.00× 77.8 1.00× 86.8 1.00× 84.3 1.00×

FastBERT
0.2 41.7 1.26× 76.9 1.24× 84.9 1.42× 84.0 1.66×
0.4 36.4 1.55× 73.2 1.49× 80.5 1.63× 80.3 1.75×
0.5 35.3 1.79× 72.6 1.84× 79.5 1.84× 78.9 2.00×

PDI (our model)
0.2 41.8 1.36× 77.2 1.29× 86.2 1.49× 84.0 1.67×
0.4 40.8 1.83× 76.8 1.45× 85.8 1.71× 83.2 1.82×
0.5 39.3 2.01× 75.8 1.85× 85.1 2.05× 82.8 2.02×

Model τ
QQP (364K) RTE (2.5K) SST-2 (67K) STS-B (5.7K) Avg.

Cls. speedup Cls. speedup Cls. speedup Cls. speedup Cls.
DistilBERT - 84.9 0.53× 63.4 0.53× 90.7 0.53× 84.7 0.53× 77.38
DistilBERT with MR - 84.5 1.00× 62.8 1.00× 89.6 1.00× 84.3 1.00× 76.48

FastBERT
0.2 84.2 1.43× 62.2 1.13× 89.0 1.20× 83.7 1.32× 75.82
0.4 82.7 1.66× 59.5 1.45× 86.8 1.33× 82.0 1.52× 72.72
0.5 81.3 1.96× 58.3 1.62× 85.9 1.66× 80.9 1.87× 71.65

PDI (our model)
0.2 84.3 1.54× 62.3 1.21× 88.6 1.22× 83.9 1.45× 76.06
0.4 83.8 2.00× 61.4 1.50× 87.9 1.56× 83.0 1.72× 75.38
0.5 83.0 2.07× 61.1 1.76× 86.7 1.78× 82.3 1.99× 74.57

Table 1: Experiment results (median of 5 runs) on the development set of the GLUE benchmark in terms of
classification metrics (Cls.) and inference speed-ups.

3.3 Experiment Results

Model # of param.
DistilBERT 66.9M
DistilBERT with MR 45.6M
FastBERT 46.8M
PDI (our model) 47.5M

Table 2: Comparison of total number of
model parameters between baselines.

To build the pyramid structure, we inject a four-layer fully-
connected classifier head at the first layer of the model,
a three-layer fully-connected classifier head at the second
layer, and a two-layer classifier at the last layer. Table
2 compares the number of parameters of the proposed
architecture with the baselines. PDI has ≈ 1.5% more
number of parameters compared to FastBERT, due to
deeper student classifiers. We set α = 0.5 during training,
based on the validation set. classifiers.

Table 1 shows the classification results and relative inference time of different models on the GLUE
benchmark. We use DistilBERT with MR as the baseline for the inference time and normalize
other models’ speedups with respect to that. As expected, DistilBERT is constantly slower (speedup
factor of 0.53×) compared to the baseline due to having more transformers layers and no early exit
heads. We report the results over three different values of certainty thresholds, τ , for FastBERT
and PDI. This table demonstrates that across all datasets and values of τ , the proposed PDI scheme
outperforms FastBERT on both classification metrics and speedup factors. Since the student classifiers
of PDI are more accurate (and more certain about their output as we will see in the next section)
compared to that of FastBERT, there is a higher chance that PDI exits in its earlier layers. At τ =
0.4, PDI achieves on average 3.38× and 1.69× speedup compared to the original 6-layer DistilBert
and DistilBERT with MR, respectively. While for the same value of τ , there is only 2.5% and
1.5% accuracy degradation compared to the original 6-layer DistilBert and DistilBERT with MR,
respectively. Moreover, the classifier heads add negligible complexity to the model compared to other
model components, allowing PDI to further improve its speedup compared to other baselines.

4 Conclusion
In this paper we propose Pyramid Dynamic Inference (PDI) as a method for early routing in
transformer-based architectures. PDI encourages fast inference by inserting strong classification
heads at earlier layers of the network to boost the accuracy and certainty of the early routes. In order to
prevent significant footprint increase and to leverage the semantic power of deeper transformer layers,
PDI gradually reduces the complexity of the exit classifiers as we progress deeper into the network.
Our experiments demonstrate promising results over GLUE benchmark where PDI outperforms the
state of the art FastBERT on both accuracy and speedup over almost all tasks. Also, compared to the
original 6-layer DistilBert, PDI achieves on average up to 3.38× speedup with 29% fewer parameters
with only 2.5% accuracy degradation.We plan to extend this work to jointly train the exit classifiers
and module replacing with a per-layer τ in a distillation setup. The proposed method can be used as a
parallel strategy with other compression techniques.

4



References
[1] Anish Acharya, Rahul Goel, Angeliki Metallinou, and Inderjit Dhillon. Online embedding

compression for text classification using low rank matrix factorization. In Proceedings of the
Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications
of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019. 1

[2] Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for universal sentence
representations. arXiv preprint arXiv:1803.05449, 2018. 3

[3] Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexandre Caulier, David Leroy,
Clément Doumouro, Thibault Gisselbrecht, Francesco Caltagirone, Thibaut Lavril, et al. Snips
voice platform: an embedded spoken language understanding system for private-by-design
voice interfaces. arXiv preprint arXiv:1805.10190, 2018. 1

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018. 1

[5] Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing (IWP2005), 2005. 3

[6] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir D. Bourdev. Compressing deep convolutional
networks using vector quantization. CoRR, abs/1412.6115, 2014. 1

[7] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and
Qun Liu. TinyBERT: Distilling BERT for natural language understanding. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pages 4163–4174, Online, November
2020. Association for Computational Linguistics. 1

[8] Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng, and Qi Ju. Fastbert: a
self-distilling bert with adaptive inference time. arXiv preprint arXiv:2004.02178, 2020. 2

[9] Hieu Duy Nguyen, Anastasios Alexandridis, and Athanasios Mouchtaris. Quantization aware
training with absolute-cosine regularization for automatic speech recognition. In Interspeech
2020, 2020. 1

[10] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019. 1

[11] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016. 3

[12] Hamidreza Saghir, Samridhi Choudhary, Sepehr Eghbali, and Clement Chung. Factorization-
Aware Training of Transformers for Natural Language Understanding on the Edge. In Proc.
Interspeech 2021, pages 4733–4737, 2021. 1, 2

[13] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter, 2019. 1, 2

[14] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pages 1631–1642, 2013. 3

[15] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
Mobilebert: a compact task-agnostic bert for resource-limited devices. arXiv preprint
arXiv:2004.02984, 2020. 1

[16] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet: Fast inference via early
exiting from deep neural networks, 2017. 2

[17] Urmish Thakker, Jesse G. Beu, Dibakar Gope, Ganesh Dasika, and Matthew Mattina. Rank and
run-time aware compression of NLP applications. CoRR, abs/2010.03193, 2020. 1

5



[18] Akshit Tyagi, Varun Sharma, Rahul Gupta, Lynn Samson, Nan Zhuang, Zihang Wang, and Bill
Campbell. Fast intent classification for spoken language understanding, 2019. 2

[19] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018. 3

[20] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, 2020. 1

[21] Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017. 3

[22] Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin. BERxiT: Early exiting for BERT with better
fine-tuning and extension to regression. In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, pages 91–104, Online,
April 2021. Association for Computational Linguistics. 2

[23] Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, and Ming Zhou. BERT-of-theseus:
Compressing BERT by progressive module replacing. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 7859–7869, Online,
November 2020. Association for Computational Linguistics. 1, 3

[24] Jian Xue, Jinyu Li, and Yifan Gong. Restructuring of deep neural network acoustic models with
singular value decomposition. In Proc. Interspeech 2013, pages 2365–2369, 2013. 1

[25] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in
neural information processing systems, pages 5753–5763, 2019. 1

[26] Kai Zhen, Hieu Duy Nguyen, Raviteja Chinta, Nathan Susanj, Athanasios Mouchtaris, Tariq
Afzal, and Ariya Rastrow. Sub-8-bit quantization aware training for 8-bit neural network
accelerator with on device speech recognition. In Interspeech 2022, 2022. 1

6



40

50

60

70

80

90

100

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

AC
CU

RA
CY

UNCERTAINTY

Intermediate Classifier 1

PDI FastBERT

40

50

60

70

80

90

100

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

AC
CU

RA
CY

UNCERTAINTY

Intermediate Classifier 2

PDI FastBERT

(a)

PDI
FastBERT

PDI
FastBERT

(b)

65

70

75

80

85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AC
CU

RA
CY

𝜏

PDI FastBERT

0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SP
EE
DU

P

𝜏

FastBERT PDI

(c)

65

70

75

80

85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AC
CU

RA
CY

𝜏

PDI
FastBERT
FastBERT with HL
PDI w/o HL

0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SP
EE
DU

P

𝜏

PDI
FastBERT
FastBERT with HL
PDI w/o HL

(d)

Figure 2: (a) Accuracy of intermediate classifiers for each uncertainty interval. (b) Density of samples vs
uncertainty for intermediate classifiers. (c) Accuracy and Speedup of PDI and FastBERT for each value of τ . (d)
Effect of contributing factors on the model performance for the QQP dataset.

A Further Analysis

Here we provide more insight about PDI performance. We study the output of each individual classifier
as well as the role of each contributing factor to our model performance. For this investigation we
use the QQP dataset, however the results show the same trends for the other datasets.

A.1 Layer-wise Analysis

Fig. 2a shows the output of each intermediate classifiers for both PDI and FastBERT. As we can see,
PDI classifiers are more accurate than FastBERT across all uncertainty intervals. Also, the accuracy
of both models degrade as the uncertainty increases. On the other hand, 2b shows that, for the lower
values of uncertainty, the intermediate classifiers of PDI can predict the labels for more samples. For
example the first classifier of PDI predicts the label for 53% of the samples with uncertainty less than
0.25, compared to the 43% for FastBERT. Figure 2c shows the accuracy and speedup of the models.
For larger values of τ the gap between the accuracy of the models enlarges. However, since for a
large τ (τ > 0.9) almost all samples exit from the first layer, vanilla FastBERT has better speedup.
This is due to the simpler intermediate classifier in the first layer of FastBERT compared to PDI.

A.2 Ablation Study

Here we investigate role of the two distinguishing factors between PDI and FastBERT: the pyramid
structure of the intermediate classifiers and the hybrid loss for training them. We consider two
scenarios. First, a model for which the intermediate classifiers have pyramid structure but they are
trained using only self-distillation loss, i.e. PDI without hybrid loss (PDI w/o HL). Second, a model
with vanilla FastBERT structured that is trained using hybrid loss (FastBERT with HL).

Fig. 2d shows the results of this ablation study in terms of classification accuracy and model speedup.
Based on the results, pyramid structure contributes more to the performance of the model. Using only
the self-distillation loss can be beneficial in the cases where class labels are not available. However,
the hybrid loss brings more accuracy and speedup to the model. Moreover, the hybrid loss can always
be changed to the self-distillation loss by setting α = 0.

7


