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Abstract

Transformers have displaced recurrent neural networks (RNN) for language mod-
elling due to their scalability on ubiquitous GPUs. However, resource constrained
systems are confronted with the high computational cost and memory footprint of
both training and inference with transformer language models. RNN language mod-
els are a potential alternative, but there are gaps to bridge in terms of capabilities. The
sequential dependence of activations together with the memory and computational
requirements arising from propagating the activations of all the neurons at every time
step to every connected neuron make RNNs harder to train efficiently. We propose an
architecture inspired by biological neuron dynamics, that makes the communication
between RNN units sparse and discrete along the forward direction. We demonstrate
our sparsity model with a gated recurrent unit (GRU). The recurrent units emit
discrete events for communication triggered by a gating mechanism. Thus, no infor-
mation needs to be communicated to other units in the absence of events. We show
that this makes backpropagation through time (BPTT) and inference computationally
sparse. With access to neuromorphic accelerators this unstructured sparsity can
realize efficiency gains for energy and memory usage. Overall, we achieve efficiency
without compromising task performance, demonstrating competitive performance
compared to state-of-the-art recurrent network models in language modelling.

1 Introduction

Large scale models such as GPT-3 [4], switch transformers [6] and DALL-E [31] demonstrate that
scaling up deep learning models to billions of parameters improves not just their performance but
leads to entirely new forms of generalisation. Due to their computational cost and memory footprint,
transformers are difficult to employ in resource constrained systems. Recurrent neural networks
(RNNs) may provide a viable alternative in such low-resource environments, but still require further
algorithmic and computational optimizations. While it is unknown if scaling up recurrent neural
networks can lead to similar forms of generalisation, the limitations on scaling them up preclude
studying this possibility. The dependence of each time step’s computation on the previous time step’s
output prevents easy parallelisation of the model computation. Moreover, propagating the activations
of all the units in each time step is computationally inefficient and leads to high memory requirements
when training with backpropagation through time (BPTT).

While allowing extraordinary task performance, the biological brain’s recurrent architecture is ex-
tremely energy efficient [20]. One of the brain’s strategies to reach these high levels of efficiency is activ-
ity sparsity. In the brain, (asynchronous) event-based communication results from the properties of the
specific physical and biological substrate on which the brain is built. Biologically realistic spiking neural
networks and neuromorphic hardware aim to use these principles to build energy-efficient software and
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hardware models [32, 35]. However, despite progress in recent years, their task performance has been
relatively limited for real-world tasks compared to recurrent architectures based on LSTM and GRU.

In this work, we propose an activity sparsity mechanism inspired by biological neuron models, to reduce
the computation required by RNNs at each time step. Our method applies a Heaviside thresholding
function with surrogate gradients to the hidden state at each time step to sparsify computation and
communication between RNN units. Notably, the theoretically required compute scales with the
number of active hidden units instead of the total number of hidden units or length of input sequence.

2 Related work
Activity sparsity in RNNs has been proposed previously in various forms [12, 25, 26], but only focusing
on achieving it during inference. QRNNs [3], SRUs [16] and IndRNNs [17] target increasing the
parallelism in a recurrent network without directly using activity sparsity. Unlike [6], our architecture
uses a unit-local decision making process for the dynamic activity sparsity, specifically for recurrent
architecture. The cost of computation is lower in our model compared to [26], and can be implemented
to have parallel computation of intermediate updates between events, while also being activity sparse
in its output.

Models based on sparse communication [37] for scalability have been proposed recently for
feedforward networks as a dynamic form of parameter-sparsity [10]. But, parameter/model-sparsity
and pruning [30] is, in general, orthogonal to and complementary with our method for activity sparsity,
and can easily be combined for additional gains. While thresholding leads to discrete events in our
model, the values communicated are real-valued unlike work on integer valued RNNs [34].

Recent work such as Gu et al. [8, 9] has shown that RNN-like models are state-of-the-art at long range
dependency modelling. Our model does not attempt at solving the long-range dependency modelling
problem, but rather aims to produce more efficient RNNs.

Biologically realistic spiking networks [18] are often implemented using event-based updates and
have been scaled to huge sizes [14], albeit without any task-related performance evaluation. Models
for deep learning with recurrent spiking networks [1, 33] mostly focus on modeling biologically
realistic memory and learning mechanisms. Moreover, units in a spiking neural network implement
dynamics based on biology and communicate solely through unitary events, while units in an EGRU
send real-valued signals to other units, and have more general dynamics.

3 An activity sparsity mechanism for recurrent architectures
We introduce an activity sparsity mechanism for RNNs consisting of a rectifier Eq. (1) and a clearing
mechanism Eq. (2). Assume an RNN with hidden state vector c= (c1,...,cn) and update equation
ct = f(xt,ct−1). Biological neuron models such as spiking neural networks [18] create sparsity by
only communicating entries ci of the state vector if they surpass a threshold. To design a similar
mechanism for general RNNs, we define a gated state vector y=(y1,...,yn) as an element-wise gated
function of the hidden state vector c as

yti = ctiH
(
cti−ϑi

)
, (1)

where H(·) is the Heaviside step function. We attach surrogate gradients dH(ci)
dci

=λmax(0,1−|ci|/ϵ)
to the non-differentiable Heaviside function similar to [1] to train the rectifier and the thresholds ϑi,
where λ and ϵ are constant parameters. For a visualization of the surrogate see Fig. 1C. Our model
achieves sparsity by passing the gated state vector y to the RNN update equation as an input

cti = f(xt,yt−1,ct−1
i )−yt−1

i for i=1,...,n. (2)

Note that the update of the entry ci depends on the full external state vector y, but only on its local
hidden state vector entry ci. As visualized in Fig. 1D only the sparse gated state vector is communicated
to other neurons. The −yt−1

i term in Eq. (2) forces the the cell state below the threshold if a signal
was emitted in the previous timestep, i.e. yt−1

i ̸=0. This term models the membrane potential reset
of biological neuron models after emitting a spike. Fig. 1B illustrates the mechanism.

3.1 Event-based Gated Recurrent Unit
We apply the above activity sparsity mechanism to the Gated Recurrent Unit (GRU) [5] as a case study,
and call our model Event-based Gated Recurrent Unit (EGRU). The GRU consists of internal gating
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Figure 1: Illustration of our sparsity-generating mechanism. A: GRU unit adapted from [5]. B: EGRU
unit with activity sparsity mechanism C: Heaviside function and surrogate gradient. D: Forward state
dynamics for two EGRU units (i and j). E: Activity-sparse backward dynamics for two EGRU units
(i and j).

variables for updates (u) and a reset (r), that determine the behavior of the internal state c

ut=σ
(
Wu

[
xt,yt−1

]
+bu

)
, rt=σ

(
Wr

[
xt,yt−1

]
+br

)
, (3)

The state variable z determines the interaction between external input x and the internal state. The
dynamics EGRU at time step t, is given by the set of vector-valued update equations:

zt = g
(
Wz

[
xt,rt⊙yt−1

]
+bz

)
, (4)

ct = ut⊙zt+(1−ut)⊙ct−1 −yt−1 yt = ctH
(
ct−ϑ

)
. (5)

where Wu/r/z , bu/r/z denote network weights and biases, ⊙ denotes the element-wise (Hadamard)
product, and σ(·) is the vectorized sigmoid function. The notation

[
xt,yt−1

]
denotes vector concate-

nation. The function g(·) is an element-wise nonlinearity (typically the hyperbolic tangent function).

3.2 Computation and memory reduction due to sparsity
We refer to sparsity as the fraction of zero entries in a state vector (forward) or gradient vector
(backward). During inference, an activity sparsity of α leads to a reduction of multiply-accumulate
(MAC) operations by a factor of α. To arrive at the computational savings induced by activity sparsity,
we have to consider the surrogate gradient defined above. The surrogate gradient is non-zero for values
of states ci between ϑi+ε and ϑi−ε as shown in the inset in Fig. 1C. For cell state values outside of this
interval, the backpropagated gradients corresponding to these cells are 0, making the backward-pass
sparse (see Fig.1E for an illustration). Hence, only a subset of the activations needs to be stored for
later use, therefore reducing the memory usage and required MAC operations. This unstructured
sparsity does not directly translate to efficiency gains on GPUs. However, recent neuromorphic devices
allow to leverage dynamic and unstructured sparsity [11, 27] even in larger scale models.

4 Language Modeling Results
We evaluate our model on language modeling tasks based on the PennTreebank [19] dataset and
the WikiText-2 dataset [22]. We exclusively focus on the RNN model itself in this work, and do not
consider techniques such as transformer-based word embeddings, neural cache models [7] or dynamic
evaluation [15]. A strong baseline for gate-based RNN architectures was established by [23]. Similarly,
our models consist of three stacked RNN cells without skip connections. DropConnect [36] is applied
to the hidden-to-hidden weights. The weights of the final softmax layer were tied to the embedding
layer [13, 29].
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Hyperparameters were tuned using a broad Bayesian search using Weights & Biases [2]. The surrogate
gradient parameter ϵ and the initialization of the thresholds φi are hyperparameters of this model.
We choose to re-parameterize thresholds with a sigmoid function to limit their domain to the interval
[0,1]. With τi drawn from a normal distribution τi ∼ N (µ,

√
2), the thresholds are initialized as

φi = 1/(1+ exp(−τi)). The hyperparameters µ of the normal distribution and ϵ of the surrogate
gradient are tuned jointly with the standard training parameters in the Bayesian search. All our models
are optimized with Adam for 2000 epochs.

The results presented in Tab. 1 and Tab. 2 show that EGRU achieves competitive performance
with AWD-LSTM [23]. At the same time, EGRU inherently exhibits activity sparsity that reduces
the theoretically required computational operations. In our experiments, GRUs did not reach the
performance of LSTM variants on this task, which, to the best of our knowledge, is consistent with
recent RNN language modeling literature [21, 23].

We implement EGRU in Haste [24] and observe shorter wallclock times than PyTorch’s [28] GRU imple-
mentation. Note that GPUs do not take advantage of unstructured sparsity. Further experimental details,
and statistics over different runs can be found in the supplement sections A and table S1 respectively.

model hidden para- effective validation test activity backward
dim meters MAC sparsity sparsity

LSTM [21] - 24M - 61.8 59.6 - -
AWD-LSTM [23] 1150 24M 24M 60.0 57.3 - -

GRU 1350 24M 24M 68.5 66.3 - -
EGRU 1350 31M 7.3M 61.3 58.7 83.0 % 47.4 %
EGRU 2000 54M 11.8M 60.9 58.8 85.8 % 39.8 %

Table 1: Model comparison on PennTreebank. Validation and test scores are given as perplexities,
where lower is better. Effective MAC operations consider the layer-wise sparsity in the forward pass.

model hidden para- effective validation test activity backward
dim meters MAC sparsity sparsity

LSTM [21] - 24M - 69.3 65.9 - -
AWD-LSTM [23] 1150 33M 32M 68.6 65.8 - -

GRU 1350 43M 30.1M 76.8 73.0 - -
EGRU 1350 48M 7.9M 72.2 69.0 80.3 % 49.6 %
EGRU 2000 71M 11.3M 71.4 68.6 83.9 % 46.7 %

Table 2: Model comparison on WikiText-2. Validation and test scores are given as perplexities, where
lower is better. Effective MAC operations consider the layer-wise sparsity in the forward pass. Model
parameters were optimized on Penn Treebank and transfered to WikiText-2.

5 Discussion
This work introduces a biologically inspired activity sparsity mechanism for recurrent neural networks.
To the best of our knowledge, this is the first demonstration of such activity sparsity mechanisms that
yields strong benchmark performance.

We stress that EGRU is a case study of this generally applicable activity sparsity mechanism.
Activity sparsity leads to a significant reduction of required operations both during inference and
backpropagation through time. The theoretical efficiency of this model can translate into gains in
energy efficiency when implemented using event-based software primitives, and recent neuromorphic
devices that allow leveraging of dynamic and unstructured sparsity [11, 27]. These same properties will
also allow the model to scale to heterogenous compute resources. At the same time, they can achieve
orders of magnitude higher energy efficiency in terms of operations per watt compared to GPUs.
On neuromorphic devices with on-chip memory in the form of a crossbar array, the activity sparsity
directly translates into energy efficiency. For larger models that need off-chip memory, activity sparsity
needs to be combined with parameter-sparsity to reduce energy-intensive memory access operations.

In future work, we will jointly explore the benefits of activity sparsity and parameter-sparsity for
energy-efficient hardware implementations.
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