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Abstract

Multi-task learning (MTL), instruction tuning, and prompting have recently been
shown to improve the generalizability of large language models to new tasks. How-
ever, the benefits of such methods are less well-documented in smaller language
models, with some studies finding contradictory results. In this work, we explore
and isolate the effects of (i) model size, (ii) general purpose MTL, (iii) in-domain
MTL, and (iv) instruction tuning for models with fewer than 500 million parameters.
Our experiments demonstrate that general purpose MTL improves performance by
31% on average, with further in-domain MTL improving performance by an addi-
tional 37.6%. Contradictory to prior works on large models, we find that instruction
tuning provides a modest 2% performance improvement for small models.

1 Introduction

Many recent works have demonstrated the benefits of prompting for large language models (see Liu
et al. [2022] for an extensive survey). The utilization of prompts has further expanded into the use
of demonstrations, examples, and task instructions, all of which have been shown to improve the
generalization of language models to unseen tasks [Wei et al., 2022a, Mishra et al., 2021, Ouyang et al.,
2022]. Studies on utilizing prompts have also shown that as model sizes scale up, the generalization
abilities of a model also increase [Brown et al., 2020, Lester et al., 2021, Min et al., 2022]. However,
utilizing models on the hundred-billion parameter scale is not accessible for most researchers and
practitioners. Additionally, some use cases for language models, such as conversational agents, may
have strict requirements for memory and latency, reducing the possible use cases for advances in
prompting methods.

Similar efforts have demonstrated the benefits of task instructions in the dialogue domain [Gupta
et al., 2022]. However, some findings have been contradictory across studies. For example, Wei
et al. [2022a] found that models with fewer than 8 billion parameters see decreases in generalization
capabilities when training with instructions, whereas Gupta et al. [2022] finds consistent gains in
models with 3 billion and fewer parameters. To conflate these results further though, Gupta et al.
[2022] only consider 2 situations: when inputs include prompts and instructions, or if inputs include
no prompt and no instruction at all.

Simultaneously with the emergence of prompting, the explicit multi-task learning (MTL) paradigm
emerged, with works such as Muppet [Aghajanyan et al., 2021] or T0 [Sanh et al., 2022] and their
variants. Explicit MTL has been demonstrated as a means of improving the downstream performance
of pre-trained language models in data-constrained settings. However, many prior studies of explicit
MTL also do not consider models smaller than the billion parameter scale.

In this work we bridge the gap between previous studies by exploring the effects of a variety of factors
on the zero-shot generalizability of modestly sized language models (<500 million parameters).
Specifically, we run experiments to find the effects of: (i) model size, (ii) general purpose MTL, (iii)
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Figure 1: Average model performance on 10 zero-shot classification tasks (left) and 8 zero-shot
generation tasks (right) comparing pre-trained models (Off the shelf) with models explicitly multi-task
trained on in-domain data with and without instructions. BART0++ is a BART-Large model which
has been explicitly multitask trained on PromptSource [Bach et al., 2022] in the same fashion as
T0++ Sanh et al. [2022] and demonstrates the effect of explicit multi-task training prior to in-domain
training.

in-domain MTL, and (iv) instruction tuning. Additionally, to better understand the sensitivity of
models to instruction phrasing, we analyze variations in performance across task instructions.

In this study, we find that (1) In-domain multi-task learning (MTL) gives the largest improvements
to generalizability, up to 80% increased performance, and 37.6% on average across all models
(2) Increasing model size alone has little effect on generalization, but when combined with in-
domain MTL leads to double the (already strong) performance improvement of in-domain MTL
(3) General purpose MTL can provide large gains (57% improvement) for downstream tasks which
closely resemble the MTL tasks, but still provides modest gains (5%) even for tasks which are
more dissimilar (4) Instruction tuning during in-domain MTL provides modest gains of just over 2%
performance, regardless of model size.

2 Preliminaries

Why should we study small models? Previous studies have shown that trends in large language
models (>1 billion parameters) do not hold for smaller language models [Wei et al., 2022b]. For this
reason, it is crucial that we must empirically find the trends that occur in smaller models and cannot
rely on studies of larger models. Additionally, for situations with latency and memory limitations,
small models may be the only option. In particular, we study zero- and few-shot performance on
dialogue tasks, a sample domain in which reducing latency and memory usage are of high importance.

What are prompting methods? In this study, we convert all tasks to a sequence-to-sequence
format, allowing for a single generative model to perform all tasks [Raffel et al., 2020]. By treating
all tasks as sequence-to-sequence, we can also include textual prompts as part of the text input. In this
work, we focus on two types of prompts: answer templates and instructions. First, answer templates
are a string of text added to the end of the input sequence that specifies the task and which allows
the model to solve the task by filling in the template in natural language [Liu et al., 2022]. This is in
contrast to more simple prompts which only specify the task by including an identifier (eg. "cola
sentence" for linguistic acceptability, or "topic" for topic classification) [Raffel et al., 2020, Albalak
et al., 2022]. Second, we also consider instructions, which are generally added at the beginning
of the input sequence and describe the task in natural language. For example, an instruction for
document grounded generation is "Read the dialogue and the document text to generate a response."

How is explicit multi-task learning (MTL) used? Explicit MTL has emerged as a strong paradigm
for eliciting zero-shot generalization in large language models [Sanh et al., 2022]. In this work we
consider 2 types of MTL: general purpose and in-domain. Specifically, general purpose MTL consists
of training across a wide variety of tasks and domains, whereas in-domain MTL consists of training
across a variety of tasks that all occur within a domain. In this work, we focus on the dialogue
domain.
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3 Experiments

Data For this study, we utilize 46 annotated tasks from the Instructdial dataset [Gupta et al., 2022].
Each task contains between 3 and 10 instructions, with 4.4 instructions on average across all tasks.
For our zero-shot experiments, we use 3 splits of train/test tasks, where each split contains 40 training
tasks and 6 test tasks. Tasks are divided into classification and generation tasks, where classification
tasks are evaluated on accuracy and generation tasks are evaluated by Rouge-L scores. The full list of
tasks and full information on train/test splits can be found in the section A of the Appendix.

Models In our experiments, we utilize 3 variants of the BART encoder-decoder model [Lewis et al.,
2020]: BART-Base, BART-Large and BART0++ [Lin et al., 2022]. BART0++ is a BART-Large that
has been explicitly multi-task trained on PromptSource [Bach et al., 2022] in the same fashion as
T0++ [Sanh et al., 2022].1

Experimental Setup To study the effects of (i) model size, (ii) general purpose MTL, (iii) in-
domain MTL, and (iv) instruction tuning, we run a series of experiments. In order to measure the
effect of (i) model size, we compare performance between BART-Base (139 million parameters)
and BART-Large (406 million parameters). To measure the effect of (ii) general purpose MTL, we
compare performance between BART-Large and BART0++. To study the effect of (iii) in-domain
MTL, we train and test each model on all 3 of the data splits and compare against an off-the-shelf
version of each model that is directly tested on each split without any in-domain MTL. These models
utilize only an answer template without access to any instructions. To measure the effect of (iv)
in-domain MTL with instructions, we train and test each model on all 3 data splits and include
instructions in addition to the answer template in the prompt. All experiments were repeated with 3
random seeds, reported scores are means, and standard deviation is reported where appropriate.2

4 Findings

Figure 1 shows the average model performance divided into classification and generation tasks.
Figure 2 shows the absolute scores for all models and methods on all 18 zero-shot tasks.

Effects of Model Size When comparing the average performance of off-the-shelf versions of
BART-Base vs. BART-Large, we find nearly identical performance across classification tasks, and
slightly better performance for BART-Base (11.2 vs. 10.2 Rouge-L) on generation tasks. However,
the benefits of model size are demonstrated once the models have been further trained using in-domain
MTL (Figure 1). We find that with in-domain MTL the base model improves its average score by 6.5.
but the large model doubles that improvement, increasing it’s score by 13.3 averaged across all tasks.

Effects of General Purpose Multi-task Learning When comparing the performance of BART-
Large vs. BART0++ we see improvements on 14/18 tasks, and an average absolute improvement
of 14.5 accuracy (57.1% improvement) on classification tasks (Figure 1 left) and more modest
improvement of 0.6 Rouge-L (5%) on generation tasks (Figure 1 right). This large discrepancy is
likely due to the distribution of tasks in the P3 dataset Bach et al. [2022] used to train BART0++, which
consists almost entirely of classification tasks with only summarization as a generation task. Figure
2 shows that, indeed, an off-the-shelf BART0++ outperforms all other methods on summarization,
including in-domain MTL.

Effects of In-Domain Multi-Task Learning We find that in-domain MTL (without instructions)
contributes the largest portion to the final generalization ability of each model. As shown in Figure
1, BART-Large gets the most benefit with gains of 20.4 points in accuracy (80% improvement)
on classification tasks and 3 Rouge-L (29.3% improvement) for generation tasks. Bart-Base gets
41.8% and 11.5% relative improvements on classification and generation tasks, respectively, and
BART0++ gets 37.7% and 25.3% relative improvements on classification and generation, respectively.
Collectively, this experiment and the previous experiments on general purpose MTL demonstrate the
importance of matching both the domain and the task distribution during MTL to the downstream

1All pre-trained models were downloaded from the HuggingFace Transformers library.
2Further training details on hyperparameters are in section C of the Appendix
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Figure 2: Absolute scores on 18 zero-shot tasks. Full task names are found in section B of the
Appendix.

tasks and domain of interest. Additionally, as previously mentioned, in-domain MTL combined with
the increased capacity of a larger model shows even greater improvements.

Effects of Instruction Tuning on In-Domain Multi-Task Learning Finally, we compare the
performance of in-domain MTL with and without instructions. The benefits of instruction tuning on
small models is less prominent than the three previous variables, but is overall still beneficial. Figure
1 shows that BART-Base improves by 3% on generation tasks, but loses 1% accuracy on classification.
To the contrary, BART-Large improves by 4% on classification tasks, and loses 2% Rouge-L on
generation tasks. Interestingly, BART0++ sees no difference in performance on classification tasks
and improves by 5% on generation tasks. These results run counter to those of Wei et al. [2022a],
which found that instruction tuning can degrade performance of models with fewer than 8 billion
parameters by about 10%. This is likely partly due to the in-domain nature of the instructions
utilized in our experiments (all instructions are related to dialogue), suggesting that future works on
instruction tuning for small models should focus on (1) domain-specific wording used in instructions,
and (2) expanding the number of domains included in instruction sets to see more general benefits.

Findings on Sensitivity to Instructions To better understand the importance of wording and draw
insights, we take a closer look at the tasks which had highest variance across instructions. First, we
find that Answer selection is the task with highest variance (BART-Base has lowest score of 27.3
and highest score of 63) and find that the three worst performing instructions include variations of
"select an option that can substitute <MASK>". The three instructions including this phrase average
an accuracy of 39, while the remaining 7 instructions lead to an average accuracy of 60.1. This large
discrepancy is likely connected to the unnaturalness of the <mask> token being used in the instruction,
and that it is unlikely to have appeared in the BART pre-training corpus, and only appears in 2/46
tasks in our in-domain dataset. The other task which utilizes the <mask> token is the "Fill-in the
Missing Utterance" task, which also achieves very poor performance across all models and methods
(with and without instructions). This is a strong reminder that to create generalizability in language
models, it is crucial to match the downstream task to the pre-training data.

Next, we analyze individual instruction words which most frequently give better than mean perfor-
mance (see Figure 3 for full results). Interestingly, we find that "return" (as used in "return a response
to the conversation") almost always leads to better than average performance (7/8 occurances for
BART-Base and Large, and 8/8 for BART0++), although it only occurs in 3 tasks, and 8 instructions.

Finally, we look at the standard deviation between instructions, averaged across all tasks and find
very little difference between models, with slightly increasing variation as models get larger, and are
pretrained (BART-Base: 0.848, BART-Large: 0.867, BART0++: 0.882). At first glance, this seems
to suggest that BART-Base is most robust to wording in instructions, but this is actually due to the
smaller number of tasks which BART-Base can meaningfully perform, as seen in Figure 2.
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A Training/Testing Data

The full list of tasks is:

Act Classification, Act Generation, Advice Generation, Advice Present, Answer Generation, Answer
Selection, Begins-with Controlled Generation, Belief State Generation, Count Response Words,
Database-based Generation, Deal Present, Dialfact Classification, Document Grounded Genera-
tion, Edit Generation, Emotion Generation, Emotion Tagging, Ends-with Controlled Generation,
Evaluation-Binary, Evaluation-Ranking, Fill-in the Missing Utterance, Find the Incoherent Utter-
ance, Graph-based Generation, Intent Classification, Intent Present, Keyword Controlled Generation,
Knowledge Grounded Generation, Natural Language Inference, Non-Toxic Feedback Generation,
Persona Grounded Generation, Persuasion Generation, Persuasion Present, Persuasion Strategy,
Question Generation, Recovery Generation, Relation Classification, Relation Present, Response Gen-
eration with n Words, Response Generation, Schema-based Generation, Slot Present, Slot Tagging,
Slot-Value Generation, Summarization, Target Controlled Generation, Toxic Response Classification.

The first data split uses the following 6 tasks for testing, and the remainder for training:

• Act Classification

• Document Grounded Generation

• Intent Classification

• Keyword Controlled Generation

• Relation Classification

• Slot Present

The second data split uses the following 6 tasks for testing, and the remainder for training:

• Answer Selection

• Natural Language Inference

• Persuasion Present

• Schema-based Generation

• Slot Tagging
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• Summarization

The third data split uses the following 6 tasks for testing, and the remainder for training:

• Advice Present
• Answer Generation
• Fill-in the Missing Utterance
• Persona Grounded Generation
• Response Generation
• Toxic Response Classification

B Task Abbreviations

• Act Cls - Act Classification
• Adv Prsnt - Advice Present
• Ans Gen - Answer Generation
• Ans Sel - Answer Selection
• DG Gen - Document Grounded Generation
• Fill Utt - Fill-in the Missing Utterance
• Int Cls - Intent Classification
• KC Gen - Keyword Controlled Generation
• NLI - Natural Language Inference
• PG Gen - Persona Grounded Generation
• Prs Prsnt - Persuasion Present
• Rel Cls - Relation Classification
• Resp Gen - Response Generation
• SB Gen - Schema-based Generation
• Slot Prsnt - Slot Present
• Slot Tag - Slot Tagging
• Summ. - Summarization
• Toxic Cls - Toxic Response Classification

C Training Details

We train all models for a maximum of 3 epochs, and utilize validation based early stopping. To
determine the learning rate, we trained each model on a single seed and validate the best learning rate
in {1e-5, 5e-5, 1e-4}, then train for 2 additional seeds using the best learning rate. We found for all
models that 5e-5 was the best learning rate. For all experiments we use the AdamW optimizer.

D Additional Figures
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Figure 3: Percentage of occurrences of a word that lead to better than average performance for an
instruction. Results calculated from BART-Base model and only includes words that occur is more
than 5 instructions.

Figure 4: Percentage of occurrences of a word that lead to better than average performance for an
instruction. Results calculated from BART-Large model and only includes words that occur is more
than 5 instructions.

Figure 5: Percentage of occurrences of a word that lead to better than average performance for an
instruction. Results calculated from BART0++ model and only includes words that occur is more
than 5 instructions.
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Figure 6: Performance comparison against a baseline model that is trained without instructions.
Values shown are the absolute score difference between the designated method and the baseline
model.

Figure 7: Performance comparison against an off-the-shelf baseline model. Values shown are the
absolute score difference between the designated method and the baseline model.
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