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Abstract

One of the most widely used self-supervised speaker verification system training
methods is to optimize the speaker embedding network in a discriminative fashion
using clustering algorithm-driven pseudo-labels. Although the pseudo-label-based
self-supervised training scheme showed impressive performance, recent studies
have shown that label noise can significantly impact the performance. In this paper,
we have explored various pseudo-labels driven by different clustering algorithms
and conducted a fine-grained analysis of the relationship between the quality of the
pseudo-labels and the speaker verification performance. From our experimental
results, we shed light on several previously unexplored and overlooked aspects
of the pseudo-labels that can have an impact on the speaker verification perfor-
mance. Moreover, we could observe that the self-supervised speaker verification
performance is heavily dependent on multiple qualitative aspects of the cluster-
ing algorithm that was used for generating the pseudo-labels. Furthermore, we
show that the speaker verification performance can be severely degraded from
overfitting to the noisy pseudo-labels and that the mixup strategy can mitigate the
memorization effects of label noise.

1 Introduction

Speaker verification is the task of verifying the claimed speaker identity based on the given speech
samples. In recent years, it has become a key technology for personnel authentication in numerous
applications [17]. Typically, utterance-level fixed-dimensional embedding vectors are extracted from
the enrollment and test speech samples and then fed into a scoring algorithm (e.g., cosine distance,
probabilistic linear discriminant analysis) to measure their similarity or likelihood of being spoken by
the same speaker. Classically, the i-vector framework has been one of the most dominant approaches
for speech embedding [10, 24] thanks to its ability to summarize the distributive patterns of the
speech in an unsupervised manner and with a relatively small amount of training data.

In recent years, various other deep learning-based architectures have been proposed to extract
embedding vectors. They have shown better performance than the i-vector framework when a large
amount of training data is available, in particular, with a sufficient number of speakers [38]. One
widely employed architecture is ECAPA-TDNN [12], which has achieved state-of-the-art performance
in text-independent speaker recognition. The ECAPA-TDNN uses squeeze-and-excitation (SE),
employs channel- and context-dependent statistics pooling & multi-layer aggregation and applies
self-attention pooling to obtain an utterance-level fixed dimensional embedding vector.

Most of the deep embedding models are trained in a fully supervised fashion and require large
speaker-labeled datasets for optimization. However, well-annotated datasets can be time-consuming
and expensive to obtain, which has lead to an increased interest in more affordable and larger but
noisy/unlabeled datasets. One common way to solve this issue for speaker verification systems is to
use clustering algorithms to generate pseudo-labels and train the speaker embedding network using

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



these labels in a discriminative fashion. The impressive performance of pseudo-labels-based self-
supervised speaker verification schemes relies greatly on accurate pseudo-labels as label noise can
significantly impact the performance. Most notably, due to the memorization effects [1], deep models
(in particular, overparameterized networks), tend to fit easy (clean) patterns in the pseudo-labels first,
and then overfit the hard and complex (noisy) patterns gradually. This leads to overfit the noise and
corruptions in the training pseudo-labels and eventually the validation curve starts to drop gradually.

To boost the downstream speaker verification performance and mitigate these side effects, we employ
mixup [46] as an efficient strategy to augment data by interpolating different data samples alongside
their labels, which leads to better generalization to out-of-set samples. This mixup strategy has been
applied and proven its strength in various tasks (e.g., image classification [46], anti-spoofing [41]
and speech recognition [29]). Unlike the conventional augmentations, which simply augment the
waveform or spectrogram of the speech by introducing adversaries via masking or additive noise,
the mixup scheme aims to create a synthetic training sample with a new target identity. Indeed, [46]
has shown that mixup not only reduces the memorization to adversarial samples, but also performs
better than Empirical Risk Minimization (ERM) [42]. On the other hand, the pseudo-labels provided
by the clustering algorithms are in general inaccurate and contain noise due to the discrepancy
between the clustering objective(s) and the final speaker verification task which causes that mixup
may not perform well [48]. Hence, in this paper we explore the effectiveness of mixup to reduce
the memorization effects of noisy labels by studying two variants of mixup at both the instance
input-level (i-mix) [28] and the latent space (l-mix) [22]. To this end, we explore the adaptation of
the two variants to the self-supervised embedding learning for speaker verification to produce robust
embeddings which can perform well on verifying out-of-set speakers.

The contributions of this paper are as follows:
• We experimented with various pseudo-labels created using a wide range of clustering

algorithms and configurations (e.g., distance functions, grouping methods, architectures) for
self-supervised speaker verification.

• We performed a fine-grained analysis of the quality and limitations of the obtained pseudo-
label assignments from various and complementary perspectives to establish a relationship
with the downstream self-supervised speaker verification performance.

• We analyzed the training behaviour of different self-supervised speaker verification sys-
tems (e.g., no regularization, i-mix, l-mix) using pseudo-labels to study the behaviour and
effectiveness of mixup, at different levels, on the generalization of the learned embeddings.

2 Background and Related work

We can generally group the methods to learn from noisy data into two categories: approaches focusing
on creating noise-robust algorithms to learn directly from noisy labels [2, 15, 35, 21, 30, 23], and
label-cleansing approaches that aim to remove or correct mislabeled data [4, 40, 43]. This paper
differs from these approaches by studying the behavior of speaker verification neural networks trained
in settings with various realistic label noise generated by several clustering algorithms, which could
help us to better understand which criteria/qualities in pseudo-labels are important to lead to better
downstream performance in self-supervised learning.

Since the instance mix (i-mix) augmentation scheme [28] performs interpolation on the training
samples and their pseudo-labels, the i-mix strategy can be applied to self-supervised learning tasks
where no actual class labels are provided, and has shown potential in a number of self-supervised
tasks including image classification and voice command recognition. On the other hand, the l-mix
[22] strategy that applies i-mix on the latent space, instead of the raw data domain, may yield more
diverse synthetic samples. In order to apply i-mix on the latent space of the speech, l-mix incorporates
a variational autoencoder (VAE) encoder [25] to extract the latent variable of the given acoustic
features. The resulting mixed latent variable is then fed into the VAE decoder to generate a new
synthetic sample, which has different patterns from the samples generated via the the standard i-mix.

3 System Description and Clustering Metrics

To generate pseudo-labels, we explored diverse clustering algorithms including widely used classical
algorithms (e.g., GMM, variational GMM [3], K-means [18], BIRCH [47], CURE [16], Agglomer-
ative Hierarchical Clustering (AHC) [9], Divisive Hierarchical Clustering (DHC) [32]), and some
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Table 1: EER (%) performance comparison between the three studied systems (no regularization,
i-mix, l-mix) trained with different pseudo-labels of various qualities in terms of clustering metrics.

Model Clustering Metrics EER (%)
ACC AMI NMI No. of clusters Completeness Homogeneity FMI Purity Silhouette CHS DBS No reg. i-mix (α=1) i-mix (α=0.5) l-mix (α=1) l-mix (α=0.5)

Supervised (True Labels) 1.0 1.0 1.0 5994 1.0 1.0 1.0 1.0 -0.006 31.708 4.692 1.474 1.988 1.341 1.612 1.458

GMM (Full cov.) 0.45 0.631 0.747 5000 0.767 0.728 0.312 0.566 -0.015 39.266 4.673 5.143 4.348 4.221 4.199 4.046

Bayesian GMM
(γ=1e-5, µ=1, Full cov.) 0.45 0.629 0.746 5000 0.766 0.727 0.312 0.566 -0.015 39.257 4.673 5.143 4.136 4.348 4.311 4.284

DHC 0.097 0.204 0.477 5000 0.479 0.474 0.035 0.132 -0.060 18.044 9.068 13.531 13.012 10.816 10.498 10.997

KMeans 0.302 0.468 0.591 5000 0.645 0.546 0.194 0.311 -0.114 24.936 2.714 6.978 6.066 6.156 6.49 6.251

CURE 0.151 0.218 0.393 5000 0.466 0.34 0.011 0.216 -0.052 17.77 5.372 6.994 6.458 6.442 6.654 6.564

BIRCH 0.299 0.374 0.54 5000 0.725 0.43 0.013 0.353 -0.027 24.348 4.901 5.642 5.514 5.493 5.758 5.573

AHC (Ward linkage) 0.587 0.74 0.825 5000 0.841 0.81 0.311 0.684 -0.010 39.561 4.991 3.685 3.478 3.51 3.377 3.409
SOM 0.025 0.088 0.402 5041 0.404 0.4 0.01 0.037 -0.041 10.148 18.402 15.806 16.474 16.691 19.385 15.514

DeepCWRN 0.003 0.006 0.15 1008 0.179 0.129 0.001 0.003 -0.217 3.841 41.521 38.171 33.537 34.093 33.234 33.34

DEC 0.029 0.122 0.365 4911 0.386 0.345 0.007 0.036 -0.084 8.734 7.266 11.957 13.006 13.802 11.866 14.406

IMSAT 0.393 0.491 0.649 4987 0.668 0.63 0.297 0.426 -0.044 22.887 6.668 5.912 6.84 6.909 6.84 8.319

recent deep learning-based clustering models (IMSAT [19], DEC [44], DeepCWRN [7], SOM [26]),
which allows us to generate diverse types of pseudo-labels depending on the optimization objective.
Moreover, in order to thoroughly analyze the quality of pseudo-labels from different perspectives
and the relationship with the downstream equal error rate (EER) performance, we use a list of 7
supervised metrics (Unsupervised Clustering Accuracy (ACC), Normalized Mutual Information
(NMI) [13], Adjusted MI (AMI) [45], Completeness score [36], Homogeneity score [36], Purity
score, and Fowlkes-Mallows index (FMI) [14]), and 3 unsupervised metrics (Silhouette score [37],
Calinski-Harabasz score (CHS)[5], and Davies-Bouldin score (DBS) [8]). More details and discussion
about the metrics and the different systems employed can be found in appendix B.

4 Results and Discussion

In Table 1, we provide the results for training the 3 speaker verification systems (ECAPA-TDNN
without regularization, and with i-mix or l-mix regularizations) using the various pseudo-labels.
According to the results, we can see that the quality of generated pseudo-labels, both in terms of
the clustering metrics and the effectiveness for the downstream speaker verification task, widely
depends on the used clustering algorithm and configuration, with some pseudo-labels achieving very
impressive performance without access to true labels, narrowing the gap with the supervised models.
The AHC pseudo-labels outperformed all other systems. The Gaussian Mixture Models (GMM) and
their variational bayesian estimation also performed very well. From the values of clustering metrics,
we can observe that the clustering algorithms have difficulty to achieve high accuracy for a dataset as
large and complex as VoxCeleb2. The Silhouette scores near 0 indicate overlapping clusters, with the
relatively low purity, FMI, and AMI scores suggesting clusters are highly noisy and not pure, hence
the existence of discrepancies between the pseudo-labels and the speaker-identity ground truths.
However, we can observe from Table 1 and the Pearson correlation coefficients between the clus-
tering metrics and the validation EER performance depicted in Figure 1-b that clustering metrics
are highly predictive of the final downstream speaker-verification performance, with correlations for
metrics such as DBS, Silhoutte, and completeness been very highly significant. This is especially
interesting since unlike ACC, NMI, or the adjusted random index [20, 39] which are the main widely
reported metrics in the literature, we find that notions such as completeness, dispersion and cohesion
of generated clustering assignments are very important. These high degrees of linear correlation
(close to 1 or -1) strongly suggest to us that monitoring clustering metrics during the generation of
pseudo-labels, in particular the unsupervised Silhoutte, CHS, and DBS scores which do not need
access to any ground-truth, can be very effective and practical to constantly ensure good downstream
performance. Furthermore, we can notice that despite the high correlations, each of these metrics has
its predictive limitations failing sometimes to predict how good or bad the downstream performance
will be compared to other systems. We do observe however a complementarity between all of these
metrics (e.g., GMM with full cov. vs. AHC or Bayesian GMM where DBS score alone wasn’t enough
to infer the relative EER performance).
Results overall show that our adopted ECAPA-TDNN-based embedding systems trained with AAM-
Softmax objective [11] are robust and able to generalize even on massively noisy labels, instead of
merely memorizing noise. Interestingly, they can perform well even at levels of accuracy below 40%
and relatively low purity, completeness, and mutual information (e.g., KMeans, CURE, or BIRCH).
Regarding mixup, as shown in Table 1, the i-mix and l-mix regularization strategies, tested with
alpha values of 1 and 0.5, were both able to improve the performance in almost all the cases, further
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(a) (b)

Figure 1: (a) EER (%) performance over time of speaker verification systems trained with pseudo-
labels. (b) Heatmap plot of the Pearson product-moment correlation coefficients between the cluster-
ing metrics and the speaker verification EER validation performance for all pseudo-labels combined.

reducing the performance gap between the self-supervised systems and the supervised (i.e., true
labels) ones. Accordingly, we could see that by favoring the smoothness of the output distribution,
i-mix and l-mix are effective in mitigating the various label noise in pseudo-labels. Finally, Figure 1-a
shows the speaker verification EER performance on VoxCeleb1 trials over epochs for the 3 types of
systems (No reg., i-mix, and l-mix). Very importantly, we notice that non-regularized training overfits
very quickly to the noisy labels and validation performance degrades dramatically over time, while
mixup helps to generalize better and mitigate the memorization effects issue [1] by diluting the noise
in labels and creating synthetic samples around the borders that lead to smoothing the data manifold
and better class separation. Hence, helping to slow down the memorization of noisy labels and learn
longly enough from the simple patterns available, which results in keeping the EER performance
steadily improving. As shown in the figure, we find instance-level i-mix to be slightly more stable
and robust during training compared to l-mix, which can be attributed to the high presence of noise in
the pseudo-labels that can hinder the mixed up latent representations of the variational autoencoder
of the l-mix system, especially with a strong discriminative objective such as AAMSoftmax, where
overfitting to incorrect labels can lead to severe performance degradation. In light of this observation,
in Figure 1-b we study on the one hand the differences in performance (∆(min(i-mix)), ∆(min(l-
mix)), and ∆(min(mixup))) between our systems without regularization (No. Reg) and our systems
incorporating i-mix, l-mix, or mixup (best of both variants) respectively. On the other hand, we study
the difference in EER performance between i-mix and l-mix (∆intra-min-mixup). From the high
correlation coefficients, we can observe that (1) in general, mixup tends to become more helpful when
the generated clusters are less compact or not well distanced. (2) instance i-mix often outperforms
latent l-mix when clusters are less pure, less compact or not well distanced between each other.

5 Conclusion

In this paper, we analyzed the impact of the quality of pseudo-labels on the self-supervised speaker
verification task. In particular, we investigated the performance of several clustering algorithms and
configurations. To this end, we have conducted experiments on the Voxceleb dataset encompassing
several classical and deep clustering algorithms, and three variants of the SOTA ECAPA-TDNN
speaker verification model (without mixup, and with i-mix or l-mix regularization). Through our
analysis, we find very high correlation between the various clustering metrics and the downstream
task, where, in particular, beyond accuracy or mutual information, metrics such as completeness,
separation and cohesion of clusters were found to be very helpful monitoring unsupervised metrics
providing complementary indicators to yield better generalization in the downstream task. Our
results showed that the pseudo-labels - based self-supervised speaker embedding systems can yield
comparable performance to the supervised embedding systems without any access to the ground-truth
labels during training, and demonstrated a high effectiveness of mixup, at both input and latent space
levels, to mitigate the memorization effects of noisy pseudo-labels and prevent overfitting inaccurate
pseudo-labels.
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A Clustering Evaluation Metrics

Following the commonly used evaluation metrics for clustering, we evaluate our clustering models
by thoroughly assessing the quality of their generated pseudo-labels from different perspectives:

• Unsupervised Clustering Accuracy (ACC): measures the consistency between the true
labels and the generated pseudo-labels. ACC = max

m

∑N
i=1 1{yi=m(ci)}

N where yi is the
ground-truth label, ci is the model’s generated cluster assignment, and m is a mapping
function which ranges over all possible one-to-one mappings between true labels and
assignments. The optimal mapping can be efficiently computed using the Hungarian
algorithm [27].

• Normalized Mutual Information (NMI) [13]: NMI(Y,C) = I(Y,C)
1
2 [H(Y )+H(C)]

where Y and C denote the ground-truth labels and the clustering assignments, respectively.
H is the entropy function and I denotes the MI metric. NMI is the harmonic mean between
below homogeneity and completeness scores.

• Adjusted MI (AMI) [45]: Since the NMI measure is not adjusted for chance, including the
adjusted MI score might be preferred for comparison in some of our cases.

• Completeness score [36]: A clustering assignment satisfies completeness if all the data
points that are members of a given class are elements of the same cluster. The scores are
between 0 and 1, where 1 stands for perfectly complete assignment.

• Homogeneity score [36]: A clustering assignment satisfies homogeneity if all of its clusters
contain only data points which are members of a single class. The score is between 0 and 1,
where 1 stands for perfectly homogeneous assignment.

• Purity score: To compute purity, each cluster is assigned to the class which is most frequent
in the cluster, and then the accuracy of this assignment is measured by counting the number
of correctly assigned samples and dividing by number of samples N. Cluster purity measures
how pure clusters are. If a cluster is composed of members of the same class, then it is
completely pure.

• Fowlkes-Mallows index (FMI) [14]: Measures the similarity of two clusterings by comput-
ing the geometric mean between the precision and recall. A higher score indicates a good
similarity between two clusters.

• Silhouette score [37]: The Silhouette score is calculated using (a) the mean intra-cluster dis-
tance and (b) the mean nearest-cluster distance for each sample. The Silhouette Coefficient
for a sample is (b−a)

max(a,b) .

• Calinski-Harabasz score (CHS) [5]: Taking only into account the data samples and the
pseudo-labels (regardless of the original true labels), this score is defined as the ratio of the
sum of between-cluster dispersion and of within-cluster dispersion. It is commonly used to
compare assignments of different methods and number of clusters. The higher the value, the
better is the assignment. In particular, this is very suitable when clusters are more or less
spherical and compact in their middle.

• Davies-Bouldin score (DBS) [8]: The average similarity measure of each cluster with its
most similar cluster, where similarity is the ratio of within-cluster distances to between-
cluster distances. Thus, clusters which are farther apart and less dispersed will result in a
better score. Lower values indicate better clustering.

B System description

B.1 Clustering-based pseudo-label generation

In order to be able to perform a complete and thorough study of the quality of the generated
pseudo-labels and their relationship with the downstream speaker verification EER performance, we
analyze these pseudo-labels from different perspectives through a list of 10 complementary clustering
metrics. This list comprises metrics that are on the one hand based on both the pseudo-labels and
true labels (e.g., Unsupervised Clustering Accuracy (ACC), Normalized Mutual Information (NMI)
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[13], Adjusted MI (AMI) [45], Completeness score [36], Homogeneity score [36], Purity score, and
Fowlkes-Mallows index (FMI) [14]). Among the criteria that these metrics assess, we can list the
following: clustering accuracy and mutual information as measures of the consistency between the
true labels and the generated pseudo-labels, homogeneity, completeness, and purity of clusters, and
precision and recall. On the other hand, we include unsupervised metrics which are only based on
the generated pseudo-labels and the data samples (e.g., Silhouette score [37], Calinski-Harabasz
score (CHS)[5], and Davies-Bouldin score (DBS) [8]) without taking into account the original true
labels. These metrics allow us to measure how compact or scattered are the clusters (e.g., intra-class
dispersion, between-cluster distances, etc.). For more details about each metric, please check our
appendix A.

To this end, we have extracted i-vector [10, 24] using the Kaldi toolkit [34], which is a statistical
unsupervised fixed-dimensional representation from each training utterance and performed clustering
on top of them. After training the clustering algorithms, we selected the aligned cluster for each
utterance and used the cluster-id as pseudo-label. With the clustering-based pseudo-labels, we can
train the embedding network via softmax-based objectives, analogous to supervised learning.

In order to evaluate our proposed clustering method and to evaluate the performance of the generated
pseudo-labels for self-supervised speaker verification, we conducted a set of experiments based on
the VoxCeleb2 dataset [6]. For training the embedding networks, we used the development subset
of the VoxCeleb2 dataset, consisting of 1,092,009 utterances collected from 5,994 speakers. The
evaluation was performed according to the original VoxCeleb1 trial list [31], which consists of 4,874
utterances spoken by 40 speakers.

The acoustic features used in the experiments were 40-dimensional Mel-frequency cepstral coeffi-
cients (MFCCs) extracted at every 10 ms, using a 25 ms Hamming window via Kaldi toolkit [34].
Moreover, we have used waveform-level data augmentations including additive noise and room
impulse response (RIR) simulation [38]. In addition to the waveform-level augmentations, for the
ECAPA-TDNN-based systems, we have also applied augmentation over the extracted MFCCs feature,
analogous to the specaugment scheme [33].

For all of our clustering algorithms, we have set the number of clusters to be 5000 (except self-
organizing maps (SOM) where number of clusters was set to be the size of the map 71*71=5041).

B.2 Instance-mixup (i-mix) for speaker verification

The i-mix [28] is an augmentation method for improving the generalization of the self-supervised
system [28]. For an objective function Lpair(x, y), where x is the input data and y is the corresponding
pseudo-label, given two data instances (xi, yi) and (xj , yj), the i-mix loss is defined as follows:

Li−mix
pair ((xi, yi), (xj , yj))

= Lpair(λxi + (1− λ)xj , λyi + (1− λ)yj),
(1)

where λ ∼ Beta(α, α) is a mixing coefficient. For losses that are linear with respect to the labels,
equation 1 can be rewritten as,

Li−mix
pair ((xi, yi), (xj , yj))

= λLpair(λxi + (1− λ)xj , yi)

+ (1− λ)Lpair(λxi + (1− λ)xj , yj).

(2)

The i-mix aims to generate synthetic training sample λxi+(1−λ)xj with identity label λyi+(1−λ)yj .

The i-mix strategy can be easily applied to the self-supervised speaker verification system training
process [22]. For instance, let us think about a self-supervised speaker embedding network being
trained with additive angular margin softmax (AAMSoftmax) objective which is formulated as
follows:

LAAMSoftmax = − 1

N

N∑
i=1

log(
es(cos(θyi,i+m))

K1
), (3)

where K1 = es(cos(θyi,i+m)) +
∑C

j=1,j ̸=i e
scosθj,i , N is the batch size, C is the number of classes,

yi corresponds to pseudo-label index, θj,i represents the angle between the column vector of weight
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matrix Wj and the i-th embedding ωi, where both Wj and ωi are normalized. Then we can incorporate
the i-mix strategy into the self-supervised AAMSoftmax as:

Li−AAMSoftmax =

− λ
1

N

N∑
i=1

log(
exp(s(cos(θyi,mix(i,r ̸=i) +m)))

KAAM
mix,i

)

− (1− λ)
1

N

N∑
i=1

log(
exp(s(cos(θyr ̸=i,mix(i,r ̸=i) +m)))

KAAM
mix,r ̸=i

),

(4)

KAAM
mix,i = exp(s(cos(θyi,mix(i,r ̸=i) +m)))

+

c∑
j=1,j ̸=i

exp(s(cos(θyj ,mix(i,r ̸=i)))),
(5)

where θyi,mix(i,r ̸=i) is the angle between the normalized Wj and ωmix(i,r ̸=i).

B.2.1 latent-level instance mixup (l-mix) for speaker verification

Although applying i-mix augmentation to the raw data has proven its strength in generalization in
speaker verification, due to the nature of linear interpolation, the standard i-mix strategy can only
generate synthetic samples between the original samples. Since such limitation may restrict the
overall diversity of the synthetic samples generated by the i-mix method, a latent-level i-mix (l-mix)
was proposed [22].

Before training the embedding system, given training MFCC x, the VAE is trained according to the
following objective:

LV AE = DKL(qϕ(z|x)||pθ(z))− Eqϕ(z|x)[logθ(x|z)], (6)

where z is the latent variable, ϕ is the encoder parameter and θ is the decoder parameter. The encoder
network takes the MFCC sample as input and generates the mean and log-variance of the posterior
latent distribution qϕ(z|x). The decoder network takes a latent sample and reconstructs the MFCC.
Detailed information on the VAE used for l-mix can be found in [22].

In the l-mix framework, a VAE is trained prior to training the embedding network. Once the VAE has
been trained, the VAE is used to perform mixup on the latent space:

zmix = λz1 + (1− λ)z2

∼N(λµ1 + (1− λ)µ2, λ
2σ2

1 + (1− λ)2σ2
2),

(7)

where λ ∼ Beta(α, α). The mean of the mixed up latent variable zmix is fed into the decoder
network to generate an MFCC sample xl−mix.

Analogous to the i-mix method, we can apply the l-mix to the self-supervised AAMSoftmax objective
as follows:

Ll−AAMSoftmax =

− λ
1

N

N∑
i=1

log(
exp(s(cos(θyi,l−mix(i,r ̸=i) +m)))

KAAM
l−mix,i

)

− (1− λ)
1

N

N∑
i=1

log(
exp(s(cos(θyr ̸=i,l−mix(i,r ̸=i) +m)))

KAAM
l−mix,r ̸=i

),

(8)

KAAM
l−mix,i = exp(s(cos(θyi,l−mix(i,r ̸=i) +m)))

+

c∑
j=1,j ̸=i

exp(s(cos(θyj ,l−mix(i,r ̸=i)))).
(9)

Attributed to the non-linear nature of the VAE, the resulting samples are expected to be more diverse
than the standard i-mix strategy.
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C Full results with additional configurations

Table 2: EER (%) performance comparison between the three studied systems (no regularization,
i-mix, l-mix) trained with different pseudo-labels of various qualities in terms of clustering metrics.

Model Clustering Metrics EER (%)
ACC AMI NMI No. of clusters Completeness Homogeneity FMI Purity Silhouette CHS DBS No reg. i-mix (α=1) i-mix (α=0.5) l-mix (α=1) l-mix (α=0.5)

Supervised (True Labels) 1.0 1.0 1.0 5994 1.0 1.0 1.0 1.0 -0.006 31.708 4.692 1.474 1.988 1.341 1.612 1.458

GMM (Full cov.) 0.45 0.631 0.747 5000 0.767 0.728 0.312 0.566 -0.015 39.266 4.673 5.143 4.348 4.221 4.199 4.046

GMM (Spherical cov.) 0.427 0.587 0.711 5000 0.739 0.685 0.22 0.539 -0.037 38.665 4.864 5.265 4.47 4.3 4.512 4.544

GMM (Diagonal cov.) 0.425 0.6 0.721 5000 0.748 0.696 0.23 0.539 -0.033 38.455 4.874 5.451 4.544 4.671 4.698 4.459

GMM (Tied cov.) 0.457 0.66 0.767 5000 0.788 0.747 0.317 0.574 -0.016 38.922 4.726 5.164 4.274 4.465 4.454 4.348

Bayesian GMM
(γ=1e-5, µ=1, Full cov.) 0.45 0.629 0.746 5000 0.766 0.727 0.312 0.566 -0.015 39.257 4.673 5.143 4.136 4.348 4.311 4.284

Bayesian GMM
(γ=100, µ=0.01, Full cov.) 0.449 0.63 0.746 5000 0.766 0.727 0.311 0.566 -0.015 39.258 4.675 4.958 4.268 4.39 4.364 4.348

DHC 0.097 0.204 0.477 5000 0.479 0.474 0.035 0.132 -0.060 18.044 9.068 13.531 13.012 10.816 10.498 10.997

KMeans 0.302 0.468 0.591 5000 0.645 0.546 0.194 0.311 -0.114 24.936 2.714 6.978 6.066 6.156 6.49 6.251

CURE 0.151 0.218 0.393 5000 0.466 0.34 0.011 0.216 -0.052 17.77 5.372 6.994 6.458 6.442 6.654 6.564

BIRCH 0.299 0.374 0.54 5000 0.725 0.43 0.013 0.353 -0.027 24.348 4.901 5.642 5.514 5.493 5.758 5.573

AHC (Ward linkage) 0.587 0.74 0.825 5000 0.841 0.81 0.311 0.684 -0.010 39.561 4.991 3.685 3.478 3.51 3.377 3.409
SOM 0.025 0.088 0.402 5041 0.404 0.4 0.01 0.037 -0.041 10.148 18.402 15.806 16.474 16.691 19.385 15.514

DeepCWRN 0.003 0.006 0.15 1008 0.179 0.129 0.001 0.003 -0.217 3.841 41.521 38.171 33.537 34.093 33.234 33.34

DEC 0.029 0.122 0.365 4911 0.386 0.345 0.007 0.036 -0.084 8.734 7.266 11.957 13.006 13.802 11.866 14.406

IMSAT 0.393 0.491 0.649 4987 0.668 0.63 0.297 0.426 -0.044 22.887 6.668 5.912 6.84 6.909 6.84 8.319

D Relationship between the clustering metrics and the downstream speaker
verfification EER performance.

Figure 2: visualization of the estimation and plot of the linear regression models relating each of the
10 clustering metrics of pseudo-labels with the speaker verification EER performance.

E Self-supervised angular additive margin softmax (AAMSoftmax) objective

The angular additive margin softmax (AAMSoftmax) objective is one of the most popular methods
for training a speaker embedding network [11]. The AAMSoftmax objective is formulated as follows:

LAAMSoftmax = − 1

N

N∑
i=1

log(
es(cos(θyi,i+m))

K1
), (10)

where K1 = es(cos(θyi,i+m)) +
∑c

j=1,j ̸=i e
scosθj,i , N is the batch size, c is the number of classes, yi

corresponds to label index, θj,i represents the angle between the column vector of weight matrix Wj
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and the i-th embedding ωi, where both Wj and ωi are normalized. The scale factor s is used to make
sure the gradient is not too small during the training and m is a hyperparameter that encourages the
similarity of correct classes to be greater than that of incorrect classes by a margin m.

The training of AAMSoftmax for self-supervised speaker embedding learning is made possible by
the use of our generated pseudo-labels as the above objective requires speaker labels for training.

F Variational Autoencoder (VAE) used for extracting the latent variables

Table 3: Architecture for the variational autoencoder (VAE) used for extracting the latent variable
from the MFCCs.

Layer # Encoder Decoder

1 3×3 2D-Conv, 32 ReLU, stride 3 64×32 FC
2 3×3 2D-Conv, 64 ReLU, stride 3 3×3 2D-TransposedConv, 32 ReLU, stride 3
3 3×3 2D-Conv, 32 ReLU, stride 3 3×3 2D-TransposedConv, 64 ReLU, stride 3
4 3×3 2D-Conv, 32 ReLU, stride 3 3×3 2D-TransposedConv, 32 ReLU, stride 3
5 32×64 FC for each µ and logσ2 3×3 2D-TransposedConv, 1 ReLU, stride 3
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