
INT8 Transformers for Inference Acceleration

Andy Rock
Untether AI

andrew@untether.ai

Omar Khalil
Untether AI

omark@untether.ai

Ofer Shai
Untether AI

ofers@untether.ai

Paul Grouchy
MDA∗

paul.grouchy@mail.utoronto.ca

Abstract

Given the general trend towards large models in the deep learning community
(particularly in the space of Transformers), much work has been done with the
goal of reducing the cost associated with inference. In this work, we reach a
new low, quantizing all weights and activations of BERT to 8-bit integers. GELU
and exp are implemented with integer lookup tables, achieving optimal INT8
quantization error. We introduce a generalized technique to compute operations
frequently missing on integer-only hardware (e.g. divisions, roots) via an efficient
instantiation of binary search. By applying it to intermediate computations in
Softmax and LayerNorm, we obtain accurate implementations of these layers as
well. We evaluate our approach on several GLUE tasks, demonstrating minimal
accuracy degradation.

1 Introduction

Over the last several years, Transformers have revolutionized the field of deep learning, successfully
replacing recurrent models as the de facto standard in NLP. There are numerous reasons for this -
chief among them is the ability of transformer models to scale with a large number of parameters.
For this reason, efficient storage and execution of such models is required for practical applications.

One approach that has proved fruitful is quantization, a technique to reduce the bit-widths of neural
network activations and weights, saving memory and accelerating computation. There have been
several attempts to quantize transformer-based architectures, with varying goals. [7], [15] and
[3] focused on quantizing matrix multiplication layers. Mixed ([11]) and sub 8-bit ([2], [16], [6])
quantization schemes have also been attempted.

However, all of the aforementioned papers leave some operations in floating point arithmetic. [3] and
[15] keep nonlinearities in FP32, citing the risk of accuracy degradation. [9] replace nonlinearities
with integer friendly variants, e.g. exp with ReLU. I-BERT [8] was the first fully integer quantization
of a transformer, with GELU, Softmax and LayerNorm operating directly on the INT32 outputs of
previous layers.

To our knowledge, we are the first to propose a quantization of BERT ([5]) which assumes INT8
inputs and outputs for all layers - including LayerNorm, SoftMax and GELU, while suffering minimal
accuracy degradation. Our contributions are as follows:

In (2), we describe a generalized SIMD-friendly approach for computing functions such as integer
divisions, roots, and beyond, using a specialized form of branchless binary search. This enables the
computation of complex functions without requiring intrinsics. In (3), we quantize GELU to INT8

∗Work done while at Untether AI

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

via a lookup table, achieving zero accuracy degradation in excess of the inevitable quantization error.
In (4), we quantize Softmax to INT8 via two components - a LUT for the ex step, and an application
of our binary search technique for the normalization step. In (5), we quantize LayerNorm to INT8 by
applying our binary search technique to precisely compute the inverse of the standard deviation.

In (6), we quantize instances of BERT with our INT8 kernels, demonstrating minimal accuracy
degradation on a variety of GLUE tasks.

2 Binary searching for complex operations

2.1 Background

Integer-only inference accelerators often possess a very limited instruction set. This is unsurprising
for two reasons: i) there are many operations which are not naturally defined over the integers:
division, roots, transcendental functions, etc., and ii) AI accelerators are often massively parallel,
which means that control flow instructions (loops, conditionals, etc.) may not be present. To this end,
we describe a technique which enables SIMD computation of complex operations, using only existing
(generally simpler) intrinsics. Suppose we have some function f , with arguments ~x. The result f(~x)
is known to belong to Ik = {0, 1, . . . , 2k − 1}. We attempt to apply the following procedure:

2.2 Method

1. Define the function g(y) = H(y − f(~x)), whereH(z) = 1z≤0. Observe that g is monotone,
and serves as an evaluation function for a "guess" y to f(~x). In particular, if y ≤ f(~x), then
g(y) = 1. Otherwise, y > f(~x), so g(y) = 0. Note that since f is inevaluable, so is g.

2. Attempt to reparameterize g into a form g′ that does not contain the parts of f that make it
inevaluable. Note that this process is not well-defined, since it depends on the specific set
of operations that are supported by the relevant machine. Nonetheless, it is generally quite
intuitive, and is best demonstrated by the examples in Appendix A. If this process succeeds,
we end up with a function g′ = g with the helpful property that (unlike g) g′ is evaluable.

3. Define the function f ′(~x) = max{y ∈ Ik | g′(y) = 1}. Recalling that f(~x) ∈ Ik, we have:

f ′(~x) = max{y ∈ Ik | g′(y) = 1} = max{y ∈ Ik | y ≤ f(~x)} = f(~x) (1)

2.3 Implementation

This alternate definition for f directly yields a straightforward algorithm: iterate in reverse (at
compile-time) over Ik, successively querying g′ until an index y is found satisfying g′(y) = 1. By
the definition of f ′, this is f(~x).

However, this can be quite slow, running in O(2k) time (we assume g′ can be evaluated in O(1) time).
Since g′ = g is monotone, we can instead proceed via binary search, seeking the maximal element in
Ik satisfying g′. Note that a binary search over the range [0, 2k) takes on a very specific form - it runs
for exactly k iterations, and on each iteration determines whether to toggle a bit, from high to low.
This runs in O(k) time, and can be expressed branchlessly. It is given in Appendix B and enables the
computation of f(~x) - using only a few simple operations and the instructions required to compute g′.
Appendix C gives the instantiations of the algorithm for the two examples described previously.

2.4 A note on utility

While this technique may be applicable to many functions, its utility is dependent on hardware. In
particular, it is not intended to provide a speed-up over intrinsics - if they exist, they should be used.
The benefit is only realized when none exist, in which case this provides a reasonable alternative.

2.5 A note on novelty

This method of binary searching via bit twiddling is somewhat of a "folklore" algorithm - vaguely
well known, but difficult to track down the origins of (see [4] and [10] for similar ideas). The specific

2

(a) GELU (b) e−x

Figure 1: LUTs corresponding to optimal INT8 quantization of GELU and e−x

instantiations are also not new - our integer division is isomorphic to restoring division [12] and our
integer square root is isomorphic to a technique whose lineage can be traced back thousands of years
to the Chinese abacus [14].

Our contribution here is thus the mathematical formalization laid out in Section 2.2. It is this which
enables these algorithms to fall out "for free", as well as arbitrarily more complicated ones.

3 GELU

The GELU activation function is used in many transformer models, including BERT. In our setting,
we assume asymmetric and per-tensor quantization to the set of 8-bit unsigned integers I8 =
{0, 1, . . . , 255}. That is, we have input quantization parameters (Sz, Zz) and output quantization
parameters (Sy, Zy) such that an input qx ∈ Ik corresponds to the real value rx = dequantx(qx) =
Sx(qx−Zx), and an output qy ∈ Ik corresponds to the real value ry = dequanty(qy) = Sy(qy−Zy).

We would like to compute qy such that dequanty(qy) is as close as possible to GELU(dequantx(qx)).
With the standard quantization function quanty(ry) = clip(bry/Sy + Zye, 0, 255), this optimal
quantization is given by the "fake-quant" implementation qy = quanty(GELU(dequantx(qx))). This
leads to the following straightforward algorithm for perfect INT8 quantization of GELU:

1. Precompute T ∈ I8|I8| defined by Ti = quanty(GELU(dequantx(i)) for i ∈ I8 (Figure 1a).
2. At run-time, for an input qx ∈ I8, simply lookup the index qx in T , returning Tqx .

4 Softmax

The softmax activation function is defined by softmax(~x)i = exi

Σje
xj . This can be viewed as two

separate steps: 1) compute ~y = e~x, 2) normalize ~y to sum to 1. We quantize each step separately:

4.1 Exponential function

For the purpose of numerical stability, we apply the standard trick of replacing e~x with e~x−max (~x) =
e−(max (~x)−~x). The subsequent normalization step ensures that this is mathemetically equivalent.

As was done for GELU, we optimally quantize e−x with a static fake-quant lookup table (Figure 1b).
This yields a quantized representation ~qy for ~y with associated quantization parameters (Sy, Zy).

4.2 Normalization

We want to compute ~qz with quantization parameters (Sz, Zz) corresponding to ~z, the normalization
of ~y. Noting that ~y, ~z ≥ ~0, we take Zy = Zz = 0. Since ~0 ≤ ~z ≤ ~1, we take Sz = 1−0

28−1−0 = 1
255 .

Then optimal quantization is given by ~qz = quantz
(

dequanty(~y)

Σdequanty(~y)

)
=
⌊
~qy

255
D

⌉
, where D = Σ~qy .

3

Baseline FQ (GELU, Softmax, LayerNorm) INT8
mnli 0.87 0.87 0.87

mrpc(f1) 0.94 0.92 0.92
qnli 0.93 0.92 0.91
sst-2 0.94 0.93 0.93

sts-b(spearman) 0.89 0.91 0.90
rte 0.79 0.78 0.77

Table 1: GLUE inference degradation comparison - all results obtained with post-training quantization

We can easily compute
⌊
~qy

255
D

⌋
using our bitwise binary search. The full algorithm for INT8 softmax

is given in Appendix D.

5 LayerNorm

Layer Normalization operates on an input vector ~x and produces ~y = ~x−E[~x]√
Var[~x]

γ + β.

As usual, we start with the equation for optimal quantization, and solve for ~qy . We have:

Sy(~qy − Zy) =
Sx(~qx − Zx)− E[Sx(~qx − Zx)]√

Var[Sx(~qx − Zx)]
γ + β =

Sx(~qx − Zx)− Sx(E[~qx]− Zx)√
S2
xVar[~qx]

γ + β

(2)

=⇒ ~qy =
~qx − E[~qx]√

Var[~qx]
γ′ + β′ (with γ′ = γ

Sy
and β′ = β

Sy
+ Zy)

Hence, quantized LayerNorm can be computed identically to float LayerNorm.

We compute S1 =
∑

(~qx), S2 =
∑

(~qx
2), followed by E = S1

N = E[~qx], V =
N∗S2−S2

1

N2 = Var[~qx].
Note that N and N2 are constants, and thus each division can be implemented as a multiplication
followed by a shift ([1]).

For the term ~qx−E√
V

, we proceed via binary search, applying the method laid out in Section 2.2:

g(y) = 1 ⇐⇒ H

(
y − ~qx − E√

V

)
= 1

⇐⇒ y ≤ ~qx − E√
V

⇐⇒ y2V ≤ ~qx − E

⇐⇒ H(y2V − (~qx − E)) = 1

(3)

The subsequent multiplication by γ′ and addition of β′ are quantized to fixed point. The full algorithm
for INT8 LayerNorm is given in Appendix E.

6 Results

Table 1 contains experimental results across several tasks from the GLUE benchmark ([13], CC BY
4.0). The baseline column contains the original scores for the FP32 models. The FQ column refers
to an experiment where the three layers of interest were implemented "optimistically", with fake-
quantization. The relatively small deviation from the baseline scores indicates that INT8 is sufficient,
provided good integer algorithms. The INT8 column contains results from our full quantization of
BERT. The relatively small deviation from the FQ scores indicates that our INT8 implementations of
GELU, Softmax and LayerNorm are precise, nearly matching fake-quantization.

7 Conclusion

In this work, we have introduced a novel INT8 quantization scheme for several common transformer
layers - GELU, Softmax and LayerNorm. This was made possible by two ideas: 1) the optimal

4

quantization of point-wise functions via static LUTs, and 2) a formulation of binary search that
enables efficient synthesis of complex operations from simple intrinsics. We produced a fully INT8
BERT model, with minimal accuracy degradation across a variety of tasks.

References
[1] R. Alverson. Integer division using reciprocals. In [1991] Proceedings 10th IEEE Symposium

on Computer Arithmetic, pages 186–190, 1991.

[2] H. Bai, W. Zhang, L. Hou, L. Shang, J. Jin, X. Jiang, Q. Liu, M. R. Lyu, and I. King. Binarybert:
Pushing the limit of BERT quantization. CoRR, abs/2012.15701, 2020.

[3] A. Bhandare, V. Sripathi, D. Karkada, V. Menon, S. Choi, K. Datta, and V. Saletore. Effi-
cient 8-bit quantization of transformer neural machine language translation model. CoRR,
abs/1906.00532, 2019.

[4] F. Cannizzo. Fast and vectorizable alternatives to binary search. SSRN Electronic Journal, 06
2015.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding, 2018. cite arxiv:1810.04805Comment: 13 pages.

[6] J. Jin, C. Liang, T. Wu, L. Zou, and Z. Gan. KDLSQ-BERT: A quantized bert combining
knowledge distillation with learned step size quantization. CoRR, abs/2101.05938, 2021.

[7] M. Junczys-Dowmunt, K. Heafield, H. Hoang, R. Grundkiewicz, and A. Aue. Marian: Cost-
effective high-quality neural machine translation in C++. In Proceedings of the 2nd Workshop
on Neural Machine Translation and Generation, pages 129–135, Melbourne, Australia, July
2018. Association for Computational Linguistics.

[8] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer. I-bert: Integer-only bert
quantization. In M. Meila and T. Zhang, editors, Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages
5506–5518. PMLR, 18–24 Jul 2021.

[9] Y. Lin, Y. Li, T. Liu, T. Xiao, T. Liu, and J. Zhu. Towards fully 8-bit integer inference for
the transformer model. In C. Bessiere, editor, Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20, pages 3759–3765. International Joint
Conferences on Artificial Intelligence Organization, 7 2020. Main track.

[10] B. Mastripolito, N. Koskelo, D. Weatherred, D. A. Pimentel, D. Sheppard, A. P. Graham,
L. Monroe, and R. Robey. Simd-optimized search over sorted data. CoRR, abs/2112.03229,
2021.

[11] S. Shen, Z. Dong, J. Ye, L. Ma, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer. Q-bert:
Hessian based ultra low precision quantization of bert. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(05):8815–8821, Apr. 2020.

[12] K. D. TOCHER. TECHNIQUES OF MULTIPLICATION AND DIVISION FOR AUTOMATIC
BINARY COMPUTERS. The Quarterly Journal of Mechanics and Applied Mathematics,
11(3):364–384, 01 1958.

[13] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A multi-task
benchmark and analysis platform for natural language understanding. 2019. In the Proceedings
of ICLR.

[14] C. C. Woo. The Fundamental Operations in Bead Arithmetic. How to Use the Chinese Abacus.
1922.

[15] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat. Q8BERT: quantized 8bit BERT. CoRR,
abs/1910.06188, 2019.

[16] D. Zhang, J. Yang, D. Ye, and G. Hua. Lq-nets: Learned quantization for highly accurate and
compact deep neural networks. CoRR, abs/1807.10029, 2018.

5

Appendix

A Reparameterization Examples

• Let f(n, d) = bnd c, where n ≥ 0 and d > 0 are integers. Suppose division is unsupported,
but subtraction and multiplication are. For y ∈ Ik, we have:

g(y) = 1 ⇐⇒ H(y − f(n, d)) = 1

⇐⇒ y ≤
⌊n
d

⌋
⇐⇒ y ≤ n

d
⇐⇒ dy ≤ n

⇐⇒ H(dy − n) = 1

(4)

Thus, by letting g′(y) = H(dy − n), we can compute g(y) via g′(y).
• Let f(x) = b

√
xc, where x ≥ 0 is an integer. Suppose √ is unsupported, but subtraction

and multiplication are. For y ∈ Ik, we have:

g(y) = 1 ⇐⇒ H(y − f(x)) = 1

⇐⇒ y ≤ b
√
xc ⇐⇒ y ≤

√
x ⇐⇒ y2 ≤ x

⇐⇒ H(y2 − x) = 1

(5)

Thus, by letting g′(y) = H(y2 − x), we can compute g(y) via g′(y).

B Bitwise Binary Search

1: function BITWISE_BINARY_SEARCH(g′, k)
2: y ← 0
3: for b = k − 1 to 0 do
4: y′ ← y | (1� b)
5: if g′(y′) then
6: y ← y′

7: end if
8: end for
9: return y

10: end function

C Bitwise Binary Search Application

Instantiations of the technique described in Section 2.2 for truncated integer division and square root.

1: function I_DIVIDE(n, d, k) . computes bnd c ∈ Ik)
2: function CONDITION(y)
3: return d ∗ y ≤ n
4: end function
5: return BITWISE_BINARY_SEARCH(CONDITION, k)
6: end function

. I_DIVIDE(76, 7, 4)→ 10
7: function I_SQRT(x, k) . computes b

√
xc ∈ Ik)

8: function CONDITION(y)
9: return y ∗ y ≤ x

10: end function
11: return BITWISE_BINARY_SEARCH(CONDITION, k)
12: end function

. I_SQRT(2022, 8)→ 44

6

D Softmax

1: function SOFTMAX(~x)
2: ~y ← LUT[max(~x)− ~x]
3: D ←

∑
(~y)

4: function CONDITION(~z)
5: return ~z ∗D ≤ ~y ∗ 255
6: end function
7: return BITWISE_BINARY_SEARCH(CONDITION, 8)
8: end function

E LayerNorm

1: function LAYERNORM(~x ∈ I8N)
2: S1 ←

∑
(~x)

3: S2 ←
∑

(~x2)
4: E ← bS1

N e
5: V ← bNS2−S1

2

N2 e
6: function CONDITION(~y)
7: return ~y ∗ ~y ∗ V ≤ ~x− E
8: end function
9: ~y ← BRANCHLESS_BINARY_SEARCH(CONDITION, 8)

10: return ~y ∗ qγ′ + qβ′

11: end function

7

	Introduction
	Binary searching for complex operations
	Background
	Method
	Implementation
	A note on utility
	A note on novelty

	GELU
	Softmax
	Exponential function
	Normalization

	LayerNorm
	Results
	Conclusion
	Reparameterization Examples
	Bitwise Binary Search
	Bitwise Binary Search Application
	Softmax
	LayerNorm

