
Depth-Wise Attention (DWAtt): A Layer Fusion
Method for Data-Efficient Classification

Muhammad ElNokrashy, ∗†
Independent

muhammad.nael@gmail.com

Badr AlKhamissi, ∗‡
Responsible AI, Meta
badr@khamissi.com

Mona Diab
Responsible AI, Meta

mdiab@fb.com

Abstract

Language Models pretrained on large textual data have been shown to encode
different types of knowledge simultaneously. Usually, only the features from the
last layer are used when adapting to new tasks or data. We put forward that in
using or finetuning deep pretrained models, intermediate layer features that may
be relevant to the downstream task are buried too deep to be used efficiently in
terms of needed samples or steps. To test this, we propose a new layer fusion
method: Depth-Wise Attention (DWAtt), to help re-surface signals from non-final
model layers. We compare DWAtt to a basic concatenation-based layer fusion
method (Concat), and compare both to a deeper model baseline—all kept within
a similar parameter budget. Our findings show that DWAtt and Concat are more
step- and sample-efficient than the baseline, especially in the few-shot setting.
DWAtt outperforms Concat on larger data sizes. On CONLL-03 NER, layer fusion
shows 3.68− 9.73% F1 gain at different few-shot sizes. The layer fusion models
presented significantly outperform the baseline in various training scenarios with
different data sizes, architectures, and training constraints.

1 Introduction

Layer Layer Layer

 {Sum,
DotProduct Att., ...}

Figure 1: The Mixer H can be a Sum of Affines, a Dot-Product Attention module, etc. Different
variants may define Ki, Vi, and Q (key, value, and query) and utilize them differently.

The Transformer architecture (Vaswani et al., 2017) and variants (Fan, Lavril, Grave, Joulin, &
Sukhbaatar, 2020) have become a mainstream, reliable choice for a wide range of Natural Language
Processing (NLP) tasks, such as sentence classification, token labeling, retrieval, and question
answering (A. Wang et al., 2019, 2018). This is in part due to architectural properties that enable
enhanced parallelization and better modeling of long-range dependencies. Several models have since
∗Equal Contribution.
†Correspondence: muhammad.nael@gmail.com.
‡Work started independently then continued during residency at Meta AI, Seattle.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

surfaced, setting new records on different benchmarks (Lewis et al., 2020), (Brown et al., 2020),
and (Devlin, Chang, Lee, & Toutanova, 2019). In the vanilla architecture, a stack of Transformer
blocks are applied sequentially to refine the representation of an input sequence, which is then fed to
a task-specific module, such as a classifier head.

Recent works have shown that the hidden representations from intermediate layers may benefit
downstream tasks (Wallat, Singh, & Anand, 2021). Other works have tested the fusion of hidden
representations in tasks such as sequence-to-sequence machine translation (F. Liu, Ren, Zhao, & Sun,
2020; X. Liu et al., 2021; Shen, Tan, He, Qin, & Liu, 2018).

In this work, we propose a method to combine the hidden representations of encoder layers to
more easily utilize the full model. Moreover, we further investigate a simpler alternative as another
compelling baseline. Some of the inspiration for this work is based on Vertical Attention introduced
in AlKhamissi, Gabr, ElNokrashy, and Essam (2021).

First, we motivate the research in §2. We outline the utilized tasks and datasets in §3 (some
details in §D). We describe the method in §4 (some details in §E). Results and analysis are in §5
(further analysis in §A). See §6 for the experimentation setup. We conclude in §7. We discuss the
proposed method and possible hypotheses in §C, and some related work in §B.

2 Motivation & Hypothesis

A common goal when designing deeper networks is increasing their ability to represent longer
chains of abstraction in different data domains and training objectives. As the model optimizes for a
specific task, “unneeded” information is ignored. More general patterns that could benefit different
downstream tasks are less likely to pass through to later layers and to the model’s final representation.

Some properties of such base models (like large language models) may implicitly mitigate this
effect—by leveraging the larger parameter capacity and increased width. The additional parameters
enable memorizing more subtleties of the training data, while the increased model width allows for a
less compact final representation, which may let through patterns less often used by the unsupervised
language modeling objective of choice. A similar problem is the strength and clarity of gradients
into earlier intermediate layers. Methods to alleviate this include skip connections (He, Zhang, Ren,
& Sun, 2016), and alternatives to back-propagation (Nøkland, 2016). Some tasks may need such
low-level knowledge across a large example space (X. Liu et al., 2021).

In this spirit, we propose an add-on module for pretrained deep sequence models to combine the
representations of intermediate layers to adapt better to novel tasks. To benchmark our proposal by
experimenting on the following task: Named Entity Recognition (NER) in the few-shot setting on the
CONLL-03 and WIKIANN datasets in two settings: Finetuning (FT) and Feature Extraction (FE).

3 Tasks, Datasets, and Raised Questions

On many common benchmarks, state-of-the-art performance is often near saturation. We consider
some useful synthesizable variants of the benchmarks that test specific training settings or aspects
of performance. The following experiments aim to analyze different aspects using each dataset:
adaptability (finetuning versus feature extraction), sample efficiency (few-shot training), training step
efficiency (time to convergence), and effect of model depth. See Table 2 for more details.

CONLL-2003 The CONLL-03 dataset (Tjong Kim Sang & De Meulder, 2003) provides a now
mainstream NER benchmark in the English language.

WIKIANN The WIKIANN dataset (Rahimi, Li, & Cohn, 2019) is a multilingual NER benchmark
which we use to test the effect of resource availability in the pretraining phase. For few-shot
experiments, we sample a fixed training set of size N = 100 and train for each language separately.
We also compare performance on the English subset between RoBERTa and the multilingual XLM-R.

2

Table 1: RoBERTaLARGE-based configurations, the core new layer added in each, and their extra
parameter count. The enhanced baseline with additional layers is chosen to be close in size to DWATT
and CONCAT. For example, for BASE and LARGE-sized models, only n=1 and n=2 layers are added.

Name New Layer + O(·) Params + # Params
Base - - -
Base+n n× Base 7n (d+ d2) 25.19M

Average MeanPool - -
Concat Affine Ld2 25.18M

DWAtt DWAtt Ld2 + d2 + Ld 26.38M

4 Models

Let L denote a deep network’s layer stack. Then H4 is a learned function that mixes the layers’
intermediate per-token representation vectors {zn | n ∈ |L|} into ĥ; the final representation.5

ĥ = H (· · · ,
{
(n, zn) | n ∈ |L|

}
) (1)

Then H is a function of the layer indices {n} and the representation vectors {zn}. It can take other
signals, like zL 7→ q for DWAtt’s query. We consider the following layer fusion models.

Layer Concatenation. A sum of linear transforms. Note that this is equivalent to concatenating all
{zn} then transforming the concatenation into the model width d z.

ĥ =
∑
n

Wn(zn) (2)

Depth-Wise Attention. DWATT uses dot-product attention with keys kn, values vn, and query q.

kn = PE(n), vn = LNn

(
fVn (zn)

)
, q = 1 + elu

(
zL + fQ(zL)

)
. (3)

Where PE(n) is a learned positional embedding vector for layers n. LN is LayerNorm (Ba, Kiros, &
Hinton, 2016).

f(z) = W · LN(gelu(Uz)) (4)

fQ, fVn are MLPs with a bottleneck 1/2 the model width d z. elu from Clevert, Unterthiner, and
Hochreiter (2015). Each MLP is comparable to a single d z × d z linear layer. Details in Appendix E.

Note: the scoring step in Attend reduces to a single, vector-by-static matrix multiplication as the
keys {kn} need no input. Assume a time step t, then let K = {kn} and V = {vn} be the matrix
forms of the keys and values for n ∈ |L|. Then:

Attend(q, {kn}, {vn}) = softmaxn
(
q ·K>

)
·V, (5)

ĥ = zL + Attend
(
q, {kn}, {vn}

)
. (6)

Base Model. The base model (RoBERTa or XLM-RoBERTa in BASE or LARGE sizes) is used as-is.
The task module is changed where needed. In FE only the task module is trained.

Extra Transformer Layers. On top of the base model, we add 2 more Transformer layers before
the classification head. In FE mode, we train only the added layers. We refer to this model as R26
(RoBERTa) or XLM-R26 (XLM-RoBERTa).

3

8 16 32 64 128
N-Shot

0.0

0.2

0.4

0.6

0.8

F-
Sc

or
e

25 Epochs

8 16 32 64 128
N-Shot

0.4

0.5

0.6

0.7

0.8
50 Epochs

8 16 32 64 128
N-Shot

0.50

0.55

0.60

0.65

0.70

0.75

0.80
75 Epochs

8 16 32 64 128
N-Shot

0.50

0.55

0.60

0.65

0.70

0.75

0.80

100 Epochs

Model
DWAtt
Concat
RoBERTa-26

Figure 2: F1-Score on the CONLL-03 devset. All pretrained weights are frozen (FE). In each
chart from left to right, training is constrained to 25, 50, 75, and 100 max epochs. For each N-
Shot experiment, NC samples (C = 4 classes) are randomly selected and trained on for the entire
experiment. The scores are averaged across 5 trials with random initialization of weights and data
sampling. We report the best observed dev score from the full training of each experiment and trial.

5 Results and Analysis

5.1 CONLL: Few-Shot Adaptation

Micro-F1 is reported at each N-Shot in {8, 16, 32, 64, 128}. Each model in Figure 2 adds the specified
module on top of a pretrained RoBERTaLARGE. CONCAT (orange) noticeably outperforms R26 at all
few-shot settings, while DWATT (blue) outperforms CONCAT at the higher data sizes.

5.2 Step and Sample Efficiency

High Mid Low
ResourceSize

0.0

0.1

0.2

0.3

0.4

0.5

F1
-S

co
re

Model
DWAtt
Concat
XLM-RoBERTa-26

(a) F1-Score on the WIKIANN.

DWAtt Concat RoBERTa+
Model

0.2

0.3

0.4

0.5

0.6

0.7

F1
-S

co
re

Mode
FE
FT

(b) N = 8

DWAtt Concat RoBERTa+
Model

0.70

0.75

0.80

0.85

0.90

F1
-S

co
re Mode

FE
FT

(c) N = 128

Figure 3: (a) Languages are grouped into three tiers of resource size. See Figure 7 and Table 2 for
details. (b & c) Feature Extraction (FE) versus Finetuning (FT). Best validation F1-Score on
CONLL-03 within Nepochs = 50 training epochs. Finetuning consistently outperforms alternatives,
but CONCAT and DWATT approach its performance even in FE training at lower data sizes.

In Figure 2, CONCAT outperforms noticeably at the lowest end (N=8 at Nepochs=25), improving
on R26 by 58%—possibly owing to its simpler connectivity and gradient path. While DWATT’s
improvement given increased data and training time may be explained by its being more selective
through the attention module. In the largest setup (N=128, Nepochs=100; Figure 2), CONCAT
improves on R26 by 3.68%, while DWATT improves on it by 5.28%. R26 demonstrates the difficulties
of extracting the patterns needed by a downstream task from a feature extractor that has already fit its
last layer representation (L=24 for RoBERTaLARGE) for its pretraining task.

Feature Extractor Adaptability Figure 3b & 3c show the effect of finetuning (FT) all model
parameters for each of the same configurations used in other CONLL-03 experiments. At N = 8,
CONCAT in feature extraction (FE) training already gets most of the improvement observable from
full FT across the board. At N = 128 the effect is less pronounced. While layer fusion methods
help close the gap—with DWATT giving nearly half the improvement of FT using only FE, at
+5.28%—FT still manages to overshadow all FE configurations even with just R26.

4 Symbols in red have learned parameters.
5 See diagram in Figure 1.

4

5.3 WIKIANN: Adapting to High, Mid, and Low Resource Languages

Figure 3a shows average performance grouped by the token count of pretraining data according to
Conneau et al. (2019). Low-resource languages had 10–100M tokens, Mid-resource languages had
200–300M tokens , while High-resource languages had 2–20G tokens. While there is a slight lead for
layer fusion methods in the Low-resource column, the difference does not translate to a similar lead
in Mid-resource scores over High-resource. Training for Figure 3a was done similarly to Figure 2 in
FE mode.

6 Experimentation Setup

6.1 Base Models

Monolingual experiments using CONLL-03, the English subset of WIKIANN all build on RoBERTa
(R) (Y. Liu et al., 2019) via the pretrained roberta-large model. Multilingual experiments using
WIKIANN build on XLM-RoBERTa (XLM-R) via the pretrained xlm-roberta-large model.
Experiments using other variants are explicitly specified. Pretrained models are accessed via the
HuggingFace package (Wolf et al., 2019).

6.2 Training

In figures where the epoch count is reported: Each chart refers to an experiment with the indicated
Nepochs max epochs, which starts LR at max then decays it linearly to zero.

Few-shot experiments sample NC points uniformly at random from the full training set. Sampling is
not stratified, so N = 8 Shot for C = 4 classes means 32 points in total sampled without replacement.

6.3 Evaluation

NER experiments report Micro-Average F1 using seqeval (Nakayama, 2018). Where applicable,
experiments are given 5 trials whose average and confidence interval are reported by seaborn
(Waskom, 2021). For easier reading, we report scores that lie in [0, 1] as percentages [0, 100]%.

7 Conclusion & Future Work

We present DWATT—a new method of reusing the latent representations of a deep neural network.
We analyze DWATT and a similar, simpler method—CONCAT—from multiple aspects of performance
and scaling on NER tasks. Results suggest similar layer fusion methods can be a robust tool for
downstream adaptation. Performance gains from 1% to 6% and as high as 30% can be seen in
various experiments for different few-shot sizes and training times, under Finetuning or Feature
Extraction, and on base models of different depths. DWATT and CONCAT have shown improved
performance even in Feature Extraction training against full Finetuning. We believe this effect may
extend to other tasks besides sequence labeling and to other sequence modeling architectures besides
the Transformer—and propose such analysis for future work. We believe addon-style additions to
pretrained models, such as adapters and depth-wise mixing, to be a fertile ground for research into
low-cost adaptation of large models that has not been saturated yet.

References
AlKhamissi, B., Gabr, M., ElNokrashy, M., & Essam, K. (2021, Apr). Adapting marbert for

improved arabic dialect identification: Submission to the nadi 2021 shared task. In Proceedings
of the sixth arabic natural language processing workshop (p. 260–264). Association for
Computational Linguistics. Retrieved from https://aclanthology.org/2021.wanlp-1
.29

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv. Retrieved from
https://arxiv.org/abs/1607.06450 doi: 10.48550/ARXIV.1607.06450

Bapna, A., Chen, M. X., Firat, O., Cao, Y., & Wu, Y. (2018). Training deeper neural machine
translation models with transparent attention. CoRR, abs/1808.07561. Retrieved from http://
arxiv.org/abs/1808.07561

5

https://aclanthology.org/2021.wanlp-1.29
https://aclanthology.org/2021.wanlp-1.29
https://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1808.07561
http://arxiv.org/abs/1808.07561

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., . . . Amodei, D. (2020).
Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
& H. Lin (Eds.), Advances in neural information processing systems (Vol. 33, pp. 1877–
1901). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/
paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network learning
by exponential linear units (elus). arXiv. Retrieved from https://arxiv.org/abs/1511
.07289 doi: 10.48550/ARXIV.1511.07289

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., . . . Stoyanov, V.
(2019). Unsupervised cross-lingual representation learning at scale. CoRR, abs/1911.02116.
Retrieved from http://arxiv.org/abs/1911.02116

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., & Kaiser, L. (2019). Universal transformers.
ArXiv, abs/1807.03819.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019, June). BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the north American chapter of the association for computational linguistics: Human language
technologies, volume 1 (long and short papers) (pp. 4171–4186). Minneapolis, Minnesota:
Association for Computational Linguistics. Retrieved from https://aclanthology.org/
N19-1423 doi: 10.18653/v1/N19-1423

Dou, Z., Tu, Z., Wang, X., Wang, L., Shi, S., & Zhang, T. (2019). Dynamic layer aggregation for
neural machine translation with routing-by-agreement. CoRR, abs/1902.05770. Retrieved from
http://arxiv.org/abs/1902.05770

Fan, A., Lavril, T., Grave, E., Joulin, A., & Sukhbaatar, S. (2020). Accessing higher-level representa-
tions in sequential transformers with feedback memory. ArXiv, abs/2002.09402.

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. ArXiv, abs/1410.5401.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778.
Hendrycks, D., & Gimpel, K. (2016). Bridging nonlinearities and stochastic regularizers with

gaussian error linear units. ArXiv, abs/1606.08415.
Huang, G., Liu, Z., & Weinberger, K. Q. (2016). Densely connected convolutional networks. CoRR,

abs/1608.06993. Retrieved from http://arxiv.org/abs/1608.06993
Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., . . . Zettlemoyer, L. (2020,

July). BART: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. In Proceedings of the 58th annual meeting of the associa-
tion for computational linguistics (pp. 7871–7880). Online: Association for Computational
Linguistics. Retrieved from https://aclanthology.org/2020.acl-main.703 doi:
10.18653/v1/2020.acl-main.703

Li, J., Liu, C., & Gong, Y. (2018, Aug). Layer trajectory lstm. arXiv, abs/1808.09522. Retrieved
from http://arxiv.org/abs/1808.09522

Liu, F., Ren, X., Zhao, G., & Sun, X. (2020). Layer-wise cross-view decoding for sequence-to-
sequence learning. CoRR, abs/2005.08081. Retrieved from https://arxiv.org/abs/
2005.08081

Liu, X., Wang, L., Wong, D. F., Ding, L., Chao, L. S., & Tu, Z. (2021). Understanding and improving
encoder layer fusion in sequence-to-sequence learning. In International conference on learning
representations. Retrieved from https://openreview.net/forum?id=n1HD8M6WGn

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., . . . Stoyanov, V. (2019). Roberta: A robustly
optimized bert pretraining approach. ArXiv, abs/1907.11692.

Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization. arXiv. Retrieved from
https://arxiv.org/abs/1711.05101 doi: 10.48550/ARXIV.1711.05101

Nakayama, H. (2018). seqeval: A python framework for sequence labeling evaluation. Re-
trieved from https://github.com/chakki-works/seqeval (Software available from
https://github.com/chakki-works/seqeval)

Nøkland, A. (2016). Direct feedback alignment provides learning in deep neural networks. arXiv.
Retrieved from https://arxiv.org/abs/1609.01596 doi: 10.48550/ARXIV.1609
.01596

Rahimi, A., Li, Y., & Cohn, T. (2019, July). Massively multilingual transfer for NER. In Proceedings
of the 57th annual meeting of the association for computational linguistics (pp. 151–164).
Florence, Italy: Association for Computational Linguistics. Retrieved from https://www
.aclweb.org/anthology/P19-1015

6

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1911.02116
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
http://arxiv.org/abs/1902.05770
http://arxiv.org/abs/1608.06993
https://aclanthology.org/2020.acl-main.703
http://arxiv.org/abs/1808.09522
https://arxiv.org/abs/2005.08081
https://arxiv.org/abs/2005.08081
https://openreview.net/forum?id=n1HD8M6WGn
https://arxiv.org/abs/1711.05101
https://github.com/chakki-works/seqeval
https://arxiv.org/abs/1609.01596
https://www.aclweb.org/anthology/P19-1015
https://www.aclweb.org/anthology/P19-1015

Shen, Y., Tan, X., He, D., Qin, T., & Liu, T. (2018). Dense information flow for neural machine
translation. CoRR, abs/1806.00722. Retrieved from http://arxiv.org/abs/1806.00722

Tjong Kim Sang, E. F., & De Meulder, F. (2003). Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In Proceedings of the seventh conference
on natural language learning at HLT-NAACL 2003 (pp. 142–147). Retrieved from https://
www.aclweb.org/anthology/W03-0419

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I.
(2017). Attention is all you need. In Proceedings of the 31st international conference on neural
information processing systems (p. 6000–6010). Red Hook, NY, USA: Curran Associates Inc.

Wallat, J., Singh, J., & Anand, A. (2021, September). BERTnesia: Investigating the capture and
forgetting of knowledge in BERT. arXiv:2106.02902 [cs]. Retrieved 2021-12-03, from
http://arxiv.org/abs/2106.02902 (arXiv: 2106.02902)

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., . . . Bowman, S. R. (2019).
Superglue: A stickier benchmark for general-purpose language understanding systems. CoRR,
abs/1905.00537. Retrieved from http://arxiv.org/abs/1905.00537

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2018). GLUE: A multi-task
benchmark and analysis platform for natural language understanding. CoRR, abs/1804.07461.
Retrieved from http://arxiv.org/abs/1804.07461

Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D. F., & Chao, L. S. (2019). Learning deep
transformer models for machine translation. CoRR, abs/1906.01787. Retrieved from http://
arxiv.org/abs/1906.01787

Wang, Q., Li, F., Xiao, T., Li, Y., Li, Y., & Zhu, J. (2018). Multi-layer representation fusion for
neural machine translation. In Proceedings of the 27th international conference on computa-
tional linguistics (pp. 3015–3026). Retrieved 2021-06-25, from https://www.aclweb.org/
anthology/C18-1255.pdf

Waskom, M. L. (2021). seaborn: statistical data visualization. Journal of Open Source Software,
6(60), 3021. Retrieved from https://doi.org/10.21105/joss.03021 doi: 10.21105/
joss.03021

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., . . . Brew, J. (2019). Hug-
gingface’s transformers: State-of-the-art natural language processing. ArXiv, abs/1910.03771.
Retrieved from http://arxiv.org/abs/1910.03771

A More Analysis

A.1 Scaling by Depth

In Figure 4, we compare the same add-on configurations on the BASE and LARGE variants of
RoBERTa. At N = 8, CONCAT is an outlier in its performance gain over the alternatives. In all
N ∈ {8, 128}, both CONCAT and DWATT match or beat the performance gain observed from
ROBERTA+6 when changing from BASE to LARGE.

A.2 Training Behavior

In Figure 5, we focus on model validation behavior during training with Nepochs=50. At N=8,
only CONCAT manages to adapt well, and rapidly, converging in 30% of training time. At N=128,
DWATT has enough data to reach similar performance at a similar pace, and quickly pulls ahead.

We repeat in Figure 6 the experiments from Figure 2 but on English only from WIKIANN, on R26.
Yet again CONCAT performs better with less data, while DWATT is better at the higher end (N=128,
Nepochs=100) by +2.08% and +0.92% over CONCAT and R26, respectively.

A.3 Problems from Multilinguality

We hypothesize that the consistent gain of CONCAT over DWATT is due to the multilingual nature of
the pretrained XLM-R model. By design, the input space of the model is shared by all languages—any
needed language differentiation may take place only deep into the encoder stack. A layer fusion

6 ROBERTA+ BASE is L=12 + 1 layers, while LARGE is L=24+2.

7

http://arxiv.org/abs/1806.00722
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
http://arxiv.org/abs/2106.02902
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1906.01787
http://arxiv.org/abs/1906.01787
https://www.aclweb.org/anthology/C18-1255.pdf
https://www.aclweb.org/anthology/C18-1255.pdf
https://doi.org/10.21105/joss.03021
http://arxiv.org/abs/1910.03771

DWAtt Concat RoBERTa+
Model

0.2

0.3

0.4

0.5

0.6

0.7

F1
-S

co
re

Size
Base
Large

(a) N = 8

DWAtt Concat RoBERTa+
Model

0.70

0.75

0.80

0.85

0.90

F1
-S

co
re

Size
Base
Large

(b) N = 128

Figure 4: BASE versus LARGE Pretrained Models. Validation F1-Score on CONLL-03 on the
DWATT, CONCAT, and enhanced (+layers) configurations of RoBERTa BASE and LARGE. (a) At
N=8, CONCATBASE shows a clear lead even on ROBERTA+BASE. (b) At N=128, CONCATBASE
outperforms ROBERTA+LARGE, while DWATTLARGE outperforms CONCATLARGE. (c) This also
supports the claim for higher data and training efficiency from CONCAT and DWATT in FE training
compared to traditional last-layer fitting.

(a) Few-shot at N = 8. (b) Few-shot at N = 128.

Figure 5: Training Behavior. Validation F1-Score across steps in FE training on CONLL-03.
CONCAT generalizes more readily at smaller N compared to DWATT. At both sizes, layer fusion
methods are able to extract more from pretrained models than traditional last-layer fitting.

method like DWATT, which is incentivized to choose only one or a few layers per token, may have a
poorer fit compared to a less constrained method like CONCAT.

In Figure 6 we repeat the experiments from Figure 2 on the WIKIANN English subset. Compare
the scores in both Figures 6 and 7. Starting from Nepochs=25 and only N=32 samples, performance
using RoBERTaLARGE as the base model beats the corresponding run on XLM-RLARGE at Nepochs=25
with 100 samples.

8 16 32 64 128
N-Shot

0.1

0.2

0.3

0.4

0.5

F-
Sc

or
e

25 Epochs

8 16 32 64 128
N-Shot

0.25

0.30

0.35

0.40

0.45

0.50

0.55
50 Epochs

8 16 32 64 128
N-Shot

0.30

0.35

0.40

0.45

0.50

0.55
75 Epochs

8 16 32 64 128
N-Shot

0.30

0.35

0.40

0.45

0.50

0.55
100 Epochs

Model
DWAtt
Concat
RoBERTa-26

Figure 6: F1-Score on the WIKIANN English devset on the RoBERTaLARGE base model.

8

en ru id de pt ko bg ar cs hi
Language

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1
-S

co
re

ResourceSize = High

sq ja la be sw zh te af ne mr
Language

ResourceSize = Mid

ps uz ga sv am ku so km fy ug
Language

ResourceSize = Low

Model
DWAtt
Concat
XLM-RoBERTa-26

Figure 7: F1-Score on the WIKIANN devset. Each language was trained for Nepochs = 25 and tested
separately. Each model was initialized from the pretrained XLM-RLARGE weights, augmented with
the specified module (DWAtt, Concat, or additional layers), then trained on exactly 100 uniformly-
sampled training points for each language. The languages are sorted by token count of pretraining
data according to Conneau et al. (2019).

B Related Work

Layer Aggregation (static weights). Bapna, Chen, Firat, Cao, and Wu (2018) defines, for each
decoder layer, a trainable softmax-normalized vector of weights to get the weighted sum of the
encoder intermediates. X. Liu et al. (2021) provides one static, learned vector for each intermediate
layer’s representation which acts as element-wise scaling. Both works are similar to CONCAT in
applying a static, learned mixing transform to all layers. For each layer: The first provides a scalar
weight, the second provides a vector for element-wise multiplication, while CONCAT applies a linear
transform.

In Shen et al. (2018), the DenseNMT is an encoder-decoder NMT architecture densely connected in
the style of DenseNet (Huang, Liu, & Weinberger, 2016). Each encoder layer takes a concatenation
of all previous layer representations. Similarly for decoder layers. See also Q. Wang et al. (2019).
These methods compare structurally to CONCAT, which is applied only once on the full layer stack.

Q. Wang et al. (2018) generates the weight for an encoder layer via an MLP on the layer’s representa-
tion, irrespective of the rest of the model: wi = fa(zi) then ĥ =

∑
i(wizi).

Dynamic Layer Mixing. The following methods use signals from the input to change the trans-
formation itself dynamically. See also DWATT which uses a Dot-Product Attention module for
comparison. Li, Liu, and Gong (2018) applies an LSTM depth-wise on the intermediate vectors of
the stack of LSTM cells applied on input sequences, as expected. We attempted adding an LSTM cell
applied depth-wise to the Transformer encoder stack but observed lacking performance. Note that
the referenced work utilizes a non-basic cell with peep-hole expressions, and some architecture con-
nectivity that complicates experiments in the Feature Extraction context. Dou et al. (2019) utilizes a
dynamically-weighted routing mechanism to mix transformations of each intermediate representation,
then concatenate all such.

C Discussion

C.1 Levels of Abstraction

For non-recurrent deep neural networks, there exists a functional limit to the depth of abstraction
obtainable, which is proportional to the depth of the network. Abstraction here refers to the depth
of composed rules that a model may learn to apply on low-level stimulus, such as pixels or tokens.
For feed-forward models like an MLP or transformers, this corresponds to the depth in terms of
stacked nonlinear layers. As an example, to handle program-like systematic inputs, depth-recurrent
and memory-augmented architecture were utilized in works such as Dehghani, Gouws, Vinyals,
Uszkoreit, and Kaiser (2019); Graves, Wayne, and Danihelka (2014). For traditional Transformer
models, like RoBERTaLARGE, we can say that the limit is proportional to the number of layers in the
network (e.g. O(|L|); |L| = 24).

9

Hiding Within Scale. In practice, this is seldom an obvious problem because large networks would
have enough width-wise parameter capacity to directly encode “intuition”, i.e. shortcuts to knowledge
and abstraction. They may do so by tying the low-level representation of some inputs to intermediate
signals for the high-level concepts they tend to manifest. As an artificial example: A small, shallow
model for classifying sentiment may tie a token such as scary to become a strong signal for
negative sentiment, say in a movie review setting. Sensible in the domain of kids movies; but may in
fact signify a positive sentiment instead when observed in reviews for horror movies. The key point
is that it is an early shortcut, not whether it is accurate.

Intuition as Shortcuts From Raw Input. Thus, earlier layers can encode information at a higher
level than |L|-steps of abstraction would suggest. This would be needed, and expected, for models of
a reasonable depth and width to be able to satisfy the feature extraction needs of the pretraining task
at the last layer. Should a downstream task require a different signal from what the pretraining task
exposed, it may have to shift a large subset of the weights to relearn or resurface that information
from the shallower levels.

Proposition. The methods we’ve discussed may enable downstream tasks to query the model for
hidden but useful information. For the downstream task to make use of such features, it would likely
need to transform them further. By applying the 2-layer MLPs fVn on these intermediate features (in
DWATT), and a linear transform in CONCAT, the task can extract a more useful representation from
each level/layer.

C.2 Modeling Capacity

The two models presented and highlighted—DWATT and CONCAT—are aggregate views of the
features of all intermediate Transformer layers {zn | n ∈ |L|} (see Section 4). DWATT’s added
module requires access to the last layer’s zL to form the query, while CONCAT does not. Neither
method makes any use of external signals such as, for example, a task embedding vector.

These three points together present an underlying property of the modeling capacity of DWATT
and CONCAT: The depth-wise layer mixing arrives at a model that is, at most, as expressive as the
underlying sequence-modeler. See Figure 3b & 3c where layer fusion under FE approaches but does
not exceed FT, while all methods are similar under FT.

Modeling Dimensions. DWATT and CONCAT operate depth-wise over a sequence-modeling model.
By that very nature, it may not be the best option when the task at hand requires increased or improved
spatial abstraction—the ability to learn connections on a spatial axis (e.g. between tokens in sequences
in a text Transformer). Then, adding extra Transformer layers or full finetuning may be better options.

D Tasks

Table 2: Train and Dev subset sizes in sentence count. For WIKIANN, we list the average size of a
language in the corresponding resource tier, determined by train size.

Dataset Classes Resources Train Dev
CONLL-03 4 High 14k 3250

WIKIANN 3
High 20k 10k
Mid 1k–5k 1k
Low 100 100

10

Table 3: Architecture Parameters

Model Param Value
AllLarge Transformer Layers 24

All Learning Rate 1e-5

DWAtt γQ, query bottleneck 0.5
DWAtt γV , values bottleneck 0.5
DWAtt d pos, keys latent 24

E Design Details

E.1 Training

All trainings use the AdamW (Loshchilov & Hutter, 2017) optimizer with a linear decay learning rate
(LR) schedule. Training on WIKITEXT-2 uses a batch size of 8 samples, and a max LR of 5× 10−5.
Training on CONLL-03 and WIKIANN uses a batch size of 16 and a max LR of 5× 10−5.

E.2 Layer Index Embedding

kpos
n ∈ Rd pos∼ U(0, 1) are static positional embedding vectors of the layer index n. WK is a learned

affine transform.
kn = PE(n) = WKkpos

n (7)

E.3 MLP Modules

For each role ∈ {Q,V } that uses an MLP, one is defined for a layer n as:

fn(x) = Wn · LN (gelu (Un x)) (8)

Where Un,Wn are the down and up projections of the bottleneck (d z 7→ γd z 7→ d z), respectively.
This means, for example, that for value transforms one set of weights is assigned to each layer n with
nothing shared. gelu is the activation function from Hendrycks and Gimpel (2016).

11

	Introduction
	Motivation & Hypothesis
	Tasks, Datasets, and Raised Questions
	Models
	Results and Analysis
	CoNLL: Few-Shot Adaptation
	Step and Sample Efficiency
	WikiAnn: Adapting to High, Mid, and Low Resource Languages

	Experimentation Setup
	Base Models
	Training
	Evaluation

	Conclusion & Future Work
	More Analysis
	Scaling by Depth
	Training Behavior
	Problems from Multilinguality

	Related Work
	Discussion
	Levels of Abstraction
	Modeling Capacity

	Tasks
	Design Details
	Training
	Layer Index Embedding
	MLP Modules

