
SymbolicGPT: A Generative Transformer Model for
Symbolic Regression

Mojtaba Valipour
David R. Cheriton School of Computer Science

University of Waterloo
mojtaba.valipour@uwaterloo.ca

Bowen You
University of Waterloo
byyou@uwaterloo.ca

Maysum Panju
University of Waterloo

mhpanju@uwaterloo.ca

Ali Ghodsi
Department of Statistics and Actuarial Science

University of Waterloo
ali.ghodsi@uwaterloo.ca

Abstract

Symbolic regression is the task of identifying a mathematical expression that best
fits a provided dataset of input and output values. Due to the richness of the space of
mathematical expressions, symbolic regression is generally a challenging problem.
While conventional approaches based on genetic evolution algorithms have been
used for decades, deep learning-based methods are relatively new and an active
research area. In this work, we present SymbolicGPT, a novel transformer-based
language model for symbolic regression. This model exploits the advantages
of probabilistic language models like GPT, including strength in performance,
scalability, and flexibility. Through comprehensive experiments, we show that our
model performs strongly compared to competing models.1

1 Introduction

Deep language models have made an enormous impact in the field of linguistics and natural language
processing. With the advances in technology like Generative Pre-trained Transformers (GPT) Radford
et al. (2018), the scope of problems now accessible to language models continues to grow. It is
particularly interesting when language models are used for tasks that, at first glance, do not seem to
have any relationship with language at all.

Symbolic regression, the problem of finding a mathematical equation to fit a set of data, is one
such task. The objective of symbolic regression is to obtain a closed-form symbolic mathematical
expression to describe the relationship between specified predictor and response variables, where the
mathematical expression is allowed to be flexible without being restricted to a particular structure
or family. More precisely, the goal in symbolic regression is to recover a mathematical function
f in terms of the input variables x = [x1 . . . xd]

⊤, given a set of data point vectors of the form
D = {(xi, yi)}ni=1, such that f(xi) = yi for all i. Here, x1, . . . , xd, yi are scalars and xi ∈ Rd.

In this work, we explore a novel approach to symbolic regression by considering it as a task in
language modeling. Symbolic mathematics behaves as a language in its own right, with well-formed
mathematical expressions treated as valid “sentences” in this language. As with human language,
symbolic equations follow their own grammar, and an equation cannot be generated at random. It
is natural, therefore, to consider using deep language models to address tasks involving symbolic
mathematics.

1Code, datasets, and results are publicly available at https://github.com/mojivalipour/symbolicgpt

Efficient Natural Language and Speech Processing (NeurIPS 2022).

https://github.com/mojivalipour/symbolicgpt

We can frame the regression problem as an exercise in captioning. Each instance takes input in the
form of a cloud of points in Rd+1, with each point consisting of d components corresponding to x
and a single component for the associated y value. The instance returns a statement in the language
of symbolic mathematics to describe the point set. By training a model to correctly “caption” datasets
with the equations underlying them, we obtain a system for performing symbolic regression quickly
and accurately.

2 Related Work

Traditionally, the problem of symbolic regression has been tackled with methods based on genetic
algorithms McKay et al. (1995); Augusto and Barbosa (2000); Schmidt and Lipson (2009); Murari
et al. (2014); Wang et al. (2019). This is, however, computationally expensive, highly randomized,
requires instance-based training, and struggles with learning equations containing many variables
and constants.

More recently, newer approaches to symbolic regression have arisen that make use of neural networks.
The EQL (Equation Learner) model Martius and Lampert (2017); Sahoo et al. (2018) and others based
on it Chen (2020); Kim et al. (2020), take advantage of advances in deep learning as an alternative to
genetic approaches. However, they still approach symbolic regression as an instance-based problem,
training a model from scratch given every new input dataset for a regression task.

A recent study Biggio et al. (2020) presents a novel, language-based method for handling symbolic
regression as a machine translation task, similar to the approach used by Lample and Charton
(2020) for performing symbolic integration and solving differential equations. Although this method
overcomes the cost of per-instance training, its interpretation of the input dataset as a textual string
limits its usability, as the input data must follow specific constraints, such as fitting a one-dimensional
mesh of fixed size. Consequently, this method can only be used in one-dimensional space. However,
in most problems, more than one variable is involved and we need to find a multivariate function.

A recent extension of this work Biggio et al. (2021) uses the set transformer encoder Lee et al. (2019)
instead of LSTMs to resolve the scalability issues and address the permutation invariancy of the input
points properly. In this work, we also propose a scalable method that removes such limitations on the
structure of input data.

3 Method

Our model for symbolic regression, SymbolicGPT, consists of three main stages: obtaining an
order-invariant embedding of the input dataset using our modified T-net network Qi et al. (2017),
obtaining a skeleton equation using a GPT language model Radford et al. (2019), and optimizing
constant values to fill in the equation skeleton. In addition to discussing each of these steps, we also
present the method for generating our equation datasets.

3.1 Equation Generation

To train our language model, we need a large dataset of solved instances of symbolic regression. This
dataset is a collection of input-label pairs where each input is in the form of a numerical dataset, itself
a set of input and output pairs {(x, y)}, and the corresponding label is a string encoding the symbolic
expression governing the relationship between variables in the numerical dataset.

For our training dataset, we use an approach similar to Lample and Charton (2020), where we start
with a blank parse tree and then “decorate” the nodes with choices of operators and variables. In
contrast with Lample and Charton (2020), we do not constrain our parse trees by the number of nodes,
but by the number of levels. This enables more control over the maximum level of complexity in the
equations used in our training set, as the number of levels in the parse tree corresponds to the number
of potential function nesting, a measure of how complex an equation can be.

3.2 Order-Invariant Embedding

The first step in our system is to convert the input dataset D = {(xi, yi)}ni=1 ⊂ Rd+1 into a single
vector embedding wD ∈ Re. For the conversion to be useful, it must have two properties. First, it

2

should not strictly depend on the number of points in the input dataset, n. In practice, the datasets
provided as input to a symbolic regression solver may have varying sizes, and we do not want our
method to be restricted to cases with a fixed number of input points.

Second, the conversion method should not be sensitive to the order in which the points of the
dataset are given. The input to a symbolic regression instance is a collection of data points, rather
than a sequence, and the optimal symbolic expression to fit the dataset should not depend on the
order in which the points are listed. Thus, the vector embedding of the dataset should be similarly
order-invariant.

Our approach for converting the dataset D into a vector embedding is to use a network similar to T-net,
a kind of deep network that makes use of a global max-pooling layer to provide order-invariance over
its arbitrarily-sized input Qi et al. (2017). Our T-net takes as input the dataset D, consisting of n data
points over d variables, represented in matrix format as X ∈ Rn×(d+1), where n can be any number
and d, the number of allowable variables, is fixed in advance. Any symbolic regression instance with
fewer than d variables can be padded with 0 values, bringing the total number of variables up to d.

3.3 Generative Model Architecture

Token Embedding Wt

E

Point Embedding WD

INPUT: X(eq) = Sequence of Tokens e.g. <SOS>

Positional Embedding Wp

Embedding WD+Wp+X(eq)Wt

INPUT: X(points)= (n= #points, d=#variables)
n×(d+1)

...nShared MLPShared MLP W(d+1)×eShared MLP

...Shared MLPShared MLP Shared MLPn We×2e

...Shared MLPShared MLP Shared MLPn W2e×4e

Transform
er Block

Repeat × 8

Masked Multi-Headed Self-Attention

Pointwise Feed Forward

Add & Layer Norm

Transposed Embedding Wt

Softmax

Output: Probabilities Over Tokens (Symbols in Equations)
GPT:T-Net:

T

h

hWt
T

Add & Layer Norm

Learn an Order-Invariant Representation for Points

Global Max Pool on Dim
n

Fully Connected (MLP)

Fully Connected (MLP)

n×(d+1)

n×(d+1)

n×e

n×2e

n×4e

1×4e

1×2e

1×e

Batch Norm

W4e×2e

W2e×e

Figure 1: The architecture of SymbolicGPT. The left box illustrates the structure of our order-invariant
T-net for obtaining a vector representation of the input dataset, and the right box shows the structure
of the GPT language model for producing symbolic equation skeletons.

The main component of SymbolicGPT is the deep network for producing symbolic equations, as
implemented using a GPT-based language model Radford et al. (2018, 2019); Brown et al. (2020).
This framework takes in two pieces of input: the order-invariant embedding of the point cloud wD

as produced by the T-net, representing the input dataset, and a sequence of tokens, X(eq), used to
initialize the output formula string.

To train our model, we used the standard unsupervised language model’s cost function as mentioned
in the original GPT paper Radford et al. (2018).

Once the trained GPT model predicts a skeleton equation, we learn values of constants using BFGS
optimization Fletcher (1987) to decorate the skeleton as a post-processing step. This division of tasks
is a common approach for string-based regression methods Kommenda et al. (2019); Biggio et al.
(2020).

4 Experiments and Results

Our experimental framework consists of a large-scale comparison test where we test our model
on 1000 different, randomly generated instances of symbolic regression and evaluate performance
based on MSEN (y, ŷ) = 1

n

∑n
i=1

(yi−ŷi)
2

∥y+ϵ∥2
. We repeat this test on five different settings, based on

the choice of the dimension d: datasets with one input variable, two variables, three variables, and
in two different test sets, a random selection between one to nine variables. This last pair of tests
will be referred to as the “general” experiments. The first general experiment, along with the three
experiments before it, use equations that come from the same distribution that we used to generate

3

Pr
op

or
tio

n
(%

)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0

20

40

60

80

100

(a) 1 variable

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0

20

40

60

80

100

(b) 2 variables

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0

20

40

60

80

100

(c) 3 variables

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0

20

40

60

80

100

(d) 1 to 9 variables (General)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0

20

40

60

80

100

(e) 1 to 9 variables: This experiment includes
all of the benchmark equations in both AI
Feynman Udrescu and Tegmark (2020) and
Nguyen benchmarks Uy et al. (2011). We
used these benchmarks because it is a com-
mon practice in the literature.

Log Normalized MSE

Figure 2: Cumulative logMSEN over all methods and experiments in a limited budget setting. Each
curve shows the proportion of test cases that attained an error score less than every given threshold.
SymbolicGPT finds better fitting equations for more test cases than any other method tested, as well
as more highly accurate equations (with logMSEN < −10).

the training set. To ensure that the test set aligns with the training set in terms of constants and data
points, and to evaluate the model on real equations, we generated skeleton equations for the second
“general” experiment from the 12 Nguyen template equations that involve up to 3 variables and the 98
AI Feynman equations that include equations of up to 9 variables.

In each experimental setting, SymbolicGPT was trained using a minimum of 10,000 randomly
generated symbolic regression instances belonging to the associated dimensional configuration, each
consisting of an input dataset and an equation label. A further 1000 dataset-equation pairs were
generated as the validation set, and 1000 new dataset-equation pairs were generated for the test set
using different seeds.

We compared our methods with four existing models for nonlinear regression including Neural
Symbolic Regression that Scales (NeSymReS)Biggio et al. (2021), Deep Symbolic Regression (DSR)
Petersen et al. (2021), Genetic Programming (GP), and Multi-Layer Perceptrons (MLP).

For each method, we evaluated its performance on 1000 test instances of symbolic regression in each
of the four experiment settings, using MSEN as the fitness metric. We summarized the results in the
cumulative distribution plots of Figure 2, showing the proportion of the test cases that attained error
less than any given threshold value. Methods corresponding to curves positioned higher in the plot
achieved higher accuracy on more test equations, and hence are better regressors. However, the most
important region of the plot is the far left side, as the number of test cases that achieved the lowest
possible error is an indication of how often the method would find a highly accurate fitting equation.
As in the NeSymRes paper Biggio et al. (2021), we report NeSymRes for up to three variables.

5 Conclusions

In this work, we have presented a method that pushes the boundaries of language models and
approaches the problem of symbolic regression from a new and powerful direction. We have
employed language models in a novel way and with a novel approach, combining them with symbolic
mathematics and order-invariant representations of point clouds. Our approach eliminates the per-
instance computation expense of most regression methods and resolves the input restrictions imposed
by other language-based regression models.

4

References
Douglas Adriano Augusto and Helio JC Barbosa. 2000. Symbolic regression via genetic programming.

In Neural Networks, 2000. Proceedings. Sixth Brazilian Symposium on, pages 173–178. IEEE.

Luca Biggio, Tommaso Bendinelli, Aurelien Lucchi, and Giambattista Parascandolo. 2020. A seq2seq
approach to symbolic regression. In Learning Meets Combinatorial Algorithms at NeurIPS2020.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
2021. Neural symbolic regression that scales. arXiv preprint arXiv:2106.06427.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models
are few-shot learners. arXiv preprint arXiv:2005.14165.

Gang Chen. 2020. Learning symbolic expressions via gumbel-max equation learner network. arXiv
preprint arXiv:2012.06921.

Roger Fletcher. 1987. Practical Methods of Optimization, second edition. John Wiley & Sons, New
York, NY, USA.

Samuel Kim, Peter Y Lu, Srijon Mukherjee, Michael Gilbert, Li Jing, Vladimir Čeperić, and Marin
Soljačić. 2020. Integration of neural network-based symbolic regression in deep learning for
scientific discovery. IEEE Transactions on Neural Networks and Learning Systems.

Michael Kommenda, Bogdan Burlacu, Gabriel Kronberger, and Michael Affenzeller. 2019. Parameter
identification for symbolic regression using nonlinear least squares. Genetic Programming and
Evolvable Machines, pages 1–31.

Guillaume Lample and François Charton. 2020. Deep learning for symbolic mathematics. Interna-
tional Conference on Learning Representations.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. 2019.
Set transformer: A framework for attention-based permutation-invariant neural networks. In
International Conference on Machine Learning, pages 3744–3753. PMLR.

Georg S Martius and Christoph Lampert. 2017. Extrapolation and learning equations. In 5th
International Conference on Learning Representations, ICLR 2017-Workshop Track Proceedings.

Ben McKay, Mark J Willis, and Geoffrey W Barton. 1995. Using a tree structured genetic algorithm
to perform symbolic regression. In Genetic Algorithms in Engineering Systems: Innovations and
Applications, 1995. GALESIA. First International Conference on (Conf. Publ. No. 414), pages
487–492. IET.

A Murari, E Peluso, M Gelfusa, I Lupelli, M Lungaroni, and P Gaudio. 2014. Symbolic regression
via genetic programming for data driven derivation of confinement scaling laws without any
assumption on their mathematical form. Plasma Physics and Controlled Fusion, 57(1):014008.

Brenden K Petersen, Mikel Landajuela Larma, Terrell N. Mundhenk, Claudio Prata Santiago,
Soo Kyung Kim, and Joanne Taery Kim. 2021. Deep symbolic regression: Recovering mathe-
matical expressions from data via risk-seeking policy gradients. In International Conference on
Learning Representations.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 652–660.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. preprint.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Subham Sahoo, Christoph Lampert, and Georg Martius. 2018. Learning equations for extrapolation
and control. In International Conference on Machine Learning, pages 4442–4450. PMLR.

5

https://openreview.net/forum?id=m5Qsh0kBQG
https://openreview.net/forum?id=m5Qsh0kBQG

Michael Schmidt and Hod Lipson. 2009. Distilling free-form natural laws from experimental data.
Science, 324(5923):81–85.

Silviu-Marian Udrescu and Max Tegmark. 2020. AI feynman: A physics-inspired method for
symbolic regression. Science Advances, 6(16):eaay2631.

Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, Robert I McKay, and Edgar Galván-López.
2011. Semantically-based crossover in genetic programming: application to real-valued symbolic
regression. Genetic Programming and Evolvable Machines, 12(2):91–119.

Yiqun Wang, Nicholas Wagner, and James M Rondinelli. 2019. Symbolic regression in materials
science. MRS Communications, 9(3):793–805.

6

	Introduction
	Related Work
	Method
	Equation Generation
	Order-Invariant Embedding
	Generative Model Architecture

	Experiments and Results
	Conclusions

