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Abstract

Language Models (LMs) are pretrained on large unlabeled corpora through self-
supervision tasks and have become ubiquitous to several NLP applications. Recent
trends indicate that the generalization capability of Large LMs (LLMs) improves
tremendously with increasing model capacity and size of the pretraining dataset.
However, this also results in inefficiencies owing to higher training times, compute
requirements and environmental impact. Previous works have mostly addressed
the inefficiency concerns with respect to improving sample efficiency, architecture
and training loss objective with little focus on data optimization. In this work,
we explore if it is possible to use only highly informative subsets of the training
data to train LLMs while maintaining their performance. We build upon the work
done in informative data subset selection and propose INGENIOUS, a framework
that selects highly representative subsets of the training corpus by optimizing a
submodular function. We show INGENIOUS can be adopted for the scale of LLM
training and empirically demonstrate that the proposed framework achieves ∼ 99%
of original BERT performance in about ∼ 35% of the original training time.

1 Introduction

Large pre-trained language models (PLTMs) [Devlin et al., 2019, Radford et al., 2019, Yang et al.,
2020, Brown et al., 2020, Raffel et al., 2020] have revolutionized the field of NLP and are the default
choice for a wide variety of NLP tasks. However, this versatility of PTLMs comes with serious
costs. The ever-growing size of PTLMs and pretraining corpora for improving the generalization
ability results in increased consumption of resources and energy along with dire environmental
impacts [Sharir et al., 2020]. For instance, it costs an estimated $12 million to train GPT-3 [Brown
et al., 2020] with roughly 1.2 million pounds of CO2 emisssions1. Additionally, the sheer amount
of resources required and costs incurred for pretraining LMs make them inaccessible to small
organizations and universities. Hence, a crucial step towards developing responsible, fair, and
GreenAI [Schwartz et al., 2020] involves minimizing inefficiencies and costs of training large LMs.

Most of the previous efforts towards improving the efficiency of PTLMs have primarily focused on
enhancements in the model architecture, training pipeline, and the objective function used for loss
optimization. Shen et al. [2022] proposed a staged training mechanism where they start with training
a relatively smaller model which is used for initialising the full capacity model at a later stage. Sample
efficient masking techniques have also been proposed that modify the token masking strategy to enable
PTLM to better leverage context leading to an improved convergence [Bitton et al., 2021, Kaur et al.,
2022]. Yao et al. [2022] identify relevant samples from pretraining corpus based on their similarity
with task-specific dataset to train task-specific PTLM followed by fine-tuning. Such an approach
inherently suffers from the limitation of requiring to pretrain a LM for every downstream task. In
this work, driven by the observation that the scale of pretraining corpus contributes significantly to
training costs of PTLMs, we explore if it is feasible to train PTLMs using highly informative subsets

1https://fortune.com/2021/04/21/ai-carbon-footprint-reduce-environmental-impact-of-tech-google-research-study/

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://fortune.com/2021/04/21/ai-carbon-footprint-reduce-environmental-impact-of-tech-google-research-study/


of the corpus. Recently, informative data subset selection has shown great promise for efficient deep
model training in supervised and semi-supervised settings for images [Mirzasoleiman et al., 2020,
Killamsetty et al., 2021a,b,c, Pooladzandi et al., 2022]. Consequently, the main question we try to
answer in this work is: Can we efficiently pretrain large language models using informative subsets
of the training corpus without compromising performance?

In particular, we demonstrate that pretraining of LMs can be sped up significantly by training only on
informative subsets of data comprising of samples that maximize the representation of the remaining
samples from the corpus. The diminishing gains property of submodular functions [Fujishige,
2005] makes it ideal for posing subset selection as a submodular maximization problem. However,
applying existing subset selection frameworks at the scale of LLMs is non-trivial as most of such
methods rely on per-sample gradients which are computationally expensive to obtain (please refer
to Appendix A for a detailed literature survey). Further, previous works have not examined subset
selection from enormous datasets such as Wikipedia and Common Crawl, commonly used for
pretraining LMs [Devlin et al., 2019, Raffel et al., 2020]. We employ scalable sentence feature
encoders to obtain individual data sample features for subset selection, as well as various engineering
tricks that allow us to select subsets from large-scale datasets as discussed in Section 2.

Our contributions: 1) We propose INGENIOUS, a subset selection framework that selects informative
subsets by maximizing a submodular function; 2) we show that pre-training BERT on subsets selected
through INGENIOUS leads to close to 99% performance on the GLUE benchmark compared to the
original BERT training while taking only ∼ 35% of the original’s training time; 3) we perform
extensive experimentation (Section 3) to establish the effectiveness of the choice of embedding
representation employed for subset selection and show comparisons with various baselines.

2 INGENIOUS Framework

In this section, we introduce INGENIOUS - a data subset selection framework for pre-training
language models and the subset selection formulation. We first discuss some preliminary background
on submodularity. Let U = {xj}mj=1 denote the pre-training dataset with m data points and S ⊂ U
be the subset of the pre-training dataset. A set function f : 2U −→ R is submodular [Fujishige, 2005]
if for x ∈ U , f(A ∪ x)− f(A) ≥ f(B ∪ x)− f(B), ∀A ⊆ B ⊆ U and x /∈ B. In our work, we use
Facility Location [Kothawade et al., 2022], a submodular function which is defined as

fFL(A) =
∑
i∈U

max
j∈A

Sij

where S is pair-wise similarity kernel matrix and Sij is similarity between the ith and jth samples.

2.1 Methodology for Subset Selection

INGENIOUS selects an informative subset S of size k from entire unlabeled dataset U . We pose the
data subset selection problem as a submodular maximization problem which can be formulated as:

S = argmax
X∈U

f(X ,U) (1)

The optimization problem in equation 1 is an instance of cardinality constrained monotone submodular
maximization where an approximate solution can be obtained by expanding the subset through lazy
greedy algorithm [Minoux, 1978]. We incrementally add that sample to the subset which increases
the value of fFL the maximum. Further, to encourage diversity, we employ an exploration heuristic
where we modify the selected subset periodically after every R model update steps. Precisely, for each
sample, we obtain an importance score through estimating submodular gain value while creating the
subset through lazy greedy algorithm. We normalize the importance scores for all the samples through
softmax operation. Finally, to select a subset comprising of k samples after every R optimization
steps, we sample k points (without replacement) by using the normalized importance scores as
probabilities. Algorithm 1 in Appendix B summarises the training steps of LM through INGENIOUS.
The submodular function needs the pairwise similarity kernel (of size |U| × |U|) between the data
samples in U . In this study, we employ cosine similarity to compute similarity between the feature
representation of samples obtained through a feature encoder as described in Section 2.2.
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2.2 Feature Encoders for Similarity Computation

To obtain the embedded feature representation of text samples in U , we explore both dense and sparse
feature encoders. For extracting dense features, we compute text embeddings by averaging the output
embedding corresponding to all text token using the language model itself as it gets trained. However,
the type of information varies depending on the layer chosen for feature extraction. For instance,
the initial layers of BERT majorly learn syntactic features while the output of later layers contain
more semantic information. Further, it is shown that using the outputs from the middle layers of
BERT as features is more robust than using the final task-specific layers [Tenney et al., 2019]. We
discuss the choice of layer through tuning in Section 3.2. For sparse feature encoder, we consider
TF-IDF [Aizawa, 2003] owing to its success at capturing statistical lexical features [Robertson et al.,
2009] and compare performance with using dense representations (Section 3.2).

2.3 Partitioning based Efficient Subset Selection

As discussed earlier, submodular functions require a similarity kernel of size |U| × |U| and the
memory required for storing the similarity kernels can be enormous depending on the size of the
pre-training dataset (i.e., |U|). In order to minimize the memory usage, instead of selecting a subset
of size k from the entire unlabeled set directly, we first partition the unlabeled set into NP random
blocks of equal sizes (i.e., partition size is |U|

NP
) and select a subset of size k/NP from each partition

by submodular function maximization over the partition. Assuming the number of blocks in the
partition to be NP and unlabeled set partition as partition (U , NP ) = {Up

i : |Up
i | =

|U|
NP

}NP
i=1, we

can write the subset selection optimization problem with partitioning as follows:

St =

NP⋃
i=1

argmax
S∈Up

i

f(S,Up
i ) (2)

The partitioning of unlabeled set allows us to get away with constructing similarity kernels of size
|U|
NP

× |U|
NP

, thereby reducing the similarity kernel memory usage by around NP
2 times. As the

number of partitions increases, the approximation of the original optimization objective becomes less
accurate, i.e., the final subsets returned will be less optimal. As a result, partitions result in a trade-off
between performance and memory efficiency. Please refer to Appendix C for further details.

3 Experiments and Results

We take BERT as the underlying LM and use English Wikipedia with BooksCorpus as the pre-training
corpora and use MLM and NSP tasks for pretraining following details as mentioned in the work of
Devlin et al. [2019]. We perform training using a batch size of 1024 for 1,000,000 steps in case of
vanilla-BERT and for 250,000 steps (25%) in case of pretraining through INGENIOUS. We fix the
subset size to 25% of corpora size. We use Adam optimizer [Kingma and Ba, 2014] with learning
rate of 1e-4, β1 = 0.9, β2 = 0.99, L2 weight decay of 0.01. We warmstart the model with full data
training for first 2 epochs and subsequently train only on selected subsets. Training of all the models
is performed on 8 NVIDIA A100-SXM4-40GB GPUs.

3.1 Efficacy of Subset Selection in making LM Training Efficient

We evaluate the performance of BERT pretrained on subsets selected through INGENIOUS and com-
pare it with fully pretrained vanilla BERT. We employ the commonly used GLUE benchmark [Wang
et al., 2019] and report the accuracy for each task along with the mean on the dev set in Table 1
(Appendix D compares GLUE performance at different checkpoints during pretraining). We compare
INGENIOUS with two baselines - 1) Early Stopping: BERT pretraining stopped at 250K steps and
checkpoint is used for evaluation; and 2) Random Online: a subset of same size as selected by
INGENIOUS is obtained for pretraining by randomly selecting samples from U . Observe that despite
using only informative subsets and trained only for 250K steps, INGENIOUS achieves 98.5% perfor-
mance of vanilla BERT in only ∼ 35% of the latter’s training time. Compared to baselines, slightly
higher time due to subset selection overheads leads to higher accuracy as well. Most importantly, on
complex tasks such as COLA, INGENIOUS achieves performance closest to full BERT training.
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Table 1: Comparison of pretraining time and GLUE performance (averaged over 20 runs). INGENIOUS
achieves 98.5% of fully pretrained BERT performance, reducing pretraining time to ∼ 35%.

Method Runtime
(s)

Mean
Accuracy CoLA MRPC RTE STS-B SST-2 MNLI

(matched)
MNLI

(mismatched) QNLI QQP

Vanilla BERT,
1M steps 282,924 82.76 55.98 90.54 69.31 89.25 92.41 83.86 84.31 91.37 87.85

Vanilla BERT
Early stopping, 250K steps

70,861
(-74.95)

81.27
(-1.49) 50.93 90.57 66.26 88.89 91.21 82.73 83.15 90.17 87.56

Random Online,
250K steps

74,146
(-73.79)

81.04
(-1.72) 50.67 88.93 67.42 88.11 91.33 82.37 82.96 90.04 87.57

INGENIOUS,
250K steps

96,338
(-65.95)

81.6
(-1.16) 54.61 89.68 67.16 88.94 91.13 82.07 82.81 90.4 87.57

Table 2: Analysing GLUE performance (averaged over 20 runs) by varying feature representations
used for subset selection.

Method Mean
Accuracy CoLA MRPC RTE STS-B SST-2 MNLI

(matched)
MNLI

(mismatched) QNLI QQP

INGENIOUS,
BERT Layer-3, 250K steps

81.05
(-1.71) 51.67 89.99 65.78 88.09 90.85 82.41 83.05 89.93 87.66

INGENIOUS,
BERT Layer-6, 250K steps

80.9
(-1.86) 50.68 89.36 65.99 88.21 91.22 82.2 82.84 90.01 87.55

INGENIOUS,
BERT Layer-9, 250K steps

81.6
(-1.16) 54.61 89.68 67.16 88.94 91.13 82.07 82.81 90.4 87.57

INGENIOUS,
BERT Layer-12, 250K steps

80.94
(-1.82) 50.97 89.34 66.62 87.82 90.5 82.35 82.84 90.46 87.56

INGENIOUS,
TF-IDF, 250K steps

81.12
(-1.64) 52.07 90.19 66.91 88.19 90.64 82.05 82.64 89.87 87.48

3.2 Role of Feature Embeddings for Subset Selection

Different BERT layers capture different information - while the lower layers capture word or-
der [Rogers et al., 2020], the middle layers capture syntactic information [Hewitt and Manning, 2019,
Jawahar et al., 2019] and the later layers capture task-specific information [Kovaleva et al., 2019,
Hao et al., 2019]. Since it is ambiguous to identify most suitable layer, we experiment by varying
layer used to obtain representations for subset selection. We choose layers 3, 6, 9 and 12 as the
representatives of the early, middle and later layers and report the performance on dev set of GLUE
benchmark in Table 2 where it can be observed that obtaining feature embeddings using layer 9
provides best results (mean acc. of 81.6%). This can be due to the fact that it captures both syntactic
and semantic information. Further, we compare using TF-IDF features as sample representations
against dense embedded features (Ingenious TF-IDF vs. BERT Layer-9 in Table 2). We observe that
dense embeddings performs better (0.6% greater) than shallow syntactic TF-IDF features.

4 Conclusion

In this work, we discuss the inefficiencies pertaining to high pretraining times of LLMs. Different
from architecture and loss enhancements done in previous works, we explore optimisation from data
perspective to make pretraining efficient. We propose INGENIOUS framework that selects informative
data subset representative of remaining samples in corpus by formulating it as a submodular maximi-
sation problem. The value of submodular function is determined based on similarity between sample
embeddings learned by the LM. The LLM is trained only on the subset at a given time and the subset
is updated periodically. Our experiments on BERT show that its pretraining time can be reduced to
∼ 35% with ∼ 99% retention in performance. As future work, other LLMs such as GPT-2, T5 etc.
can be optimised through INGENIOUS. Also, structured data sources like knowledge graphs can be
used to guide subset selection for minimising redundancies in the pretraining data.
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A Related Work

A.1 Submodular Functions

Let U denote the unlabeled set of n data points U = {1, 2, 3, ..., n} and a set function f : 2U −→ R.
Formally, a function f is submodular [Fujishige, 2005] if for x ∈ U , f(A ∪ x) − f(A) ≥ f(B ∪
x)− f(B), ∀A ⊆ B ⊆ U and x /∈ B. For a set A ⊆ U , f(A) provides a real-valued score for A. A
function f is said to be monotone if f(A) ≤ f(B) whenever A ⊆ B. Further, f is supermodular if
−f is submodular, modular if it is both, and normalized if f(ϕ) = 0. Many combinatorial functions
such as facility location, set cover, log determinant, graph cut etc. [Iyer et al., 2021, Kothawade et al.,
2020] are naturally submodular. Submodularity is particularly appealing because it naturally occurs in
real world applications [Tohidi et al., 2020, Bach, 2013, 2019, Iyer, 2015] and also admits a constant
factor 1− 1

e [Nemhauser et al., 1978] approximation for cardinality constrained maximization. Since
most acquisition functions involve maximizing utility functions, this makes submodularity a good
choice [Wei et al., 2015]. Additionally, variants of the greedy algorithm maximize a submodular
function in near-linear time [Mirzasoleiman et al., 2015].

A.2 Submodular Data Subset Selection

Several recent papers have used submodular functions for data subset selection towards various
applications like speech recognition [Wei et al., 2014b,a], machine translation [Kirchhoff and Bilmes,
2014] and computer vision [Kaushal et al., 2019]. Other common approaches for subset selection
include the usage of coresets. Coresets are weighted subsets of the data, which approximate certain
desirable characteristics of the full data (e.g., the loss function) [Feldman, 2020]. Coreset algorithms
have been used for several problems including k-means and k-median clustering [Har-Peled and
Mazumdar, 2004], SVMs [Clarkson, 2010] and Bayesian inference [Campbell and Broderick, 2018].
Recent coreset selection-based methods [Mirzasoleiman et al., 2020, Killamsetty et al., 2021b,a,c]
have shown great promise for efficient and robust training of deep models. CRAIG [Mirzasoleiman
et al., 2020] tries to select a coreset summary of the training data that estimate the full training
gradient closely. Whereas GLISTER [Killamsetty et al., 2021b] poses the coreset selection problem
as a discrete-continuous bilevel optimization problem that minimizes the validation set loss. Similarly,
RETRIEVE [Killamsetty et al., 2021c] also uses a discrete bilevel coreset selection problem to
select unlabeled data subsets for efficient semi-supervised learning. Another approach GRAD-
MATCH [Killamsetty et al., 2021a] selects coreset summary that approximately matches the full
training loss gradient using orthogonal matching pursuit.

B Algorithm for training LM through INGENIOUS

Algorithm 1 describes the steps for training an LM efficiently through our INGENIOUS framework.

C Further Details on Parallel Computation of Subsets from Partitions

To maximize the utilization of available compute, we can select the subsets from each partition
in parallel. However, it is to be noted that the memory utilization also increases with number of
parallel process. For example, if we try to select NPP subsets from partitions in parallel, the memory
usage due to similarity kernel is of the order O(NPP

|U|2
N2

P
). In our experiments, we run NPP = 100

processes in parallel.

D Comparison of GLUE Score at Intermediate Pretraining Checkpoints

In this section, we compare the performance of regular BERT pretraining with training on subsets
selected through INGENIOUS at intermediate pretraining stages. Figure 1 demonstrates that interme-
diate checkpoints obtained through INGENIOUS pretraining enables BERT to consistently achieve
better GLUE score than regular pretraining. This trend is further amplified for the CoLA task in the
GLUE benchmark as can be observed in Figure 2 indicating better convergence.
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Algorithm 1: Training of LM through INGENIOUS
Input: Training dataset: U , Initial model parameters: θ0, Total no of training steps: T , Training steps interval for subset selection: R,

Number of steps for warmstart phase: W , Size of the coreset: k, Reg. Coefficient: λ, Learning rates: {αt}t=T−1
t=0 , Tolerance: ϵ

Set t = 0
optimizer = AdamW()
*** Warmstart Phase ***
repeat

Compute batches Ub = ((xb, yb); b ∈ (1 · · ·B)) from U
for b = 1 to B do

if t ≥ W then
break

Compute mask mt on Ub

θt+1 = optimizer.step()
t = t + 1

until until t ≥ W
*** Subset Selection ***
greedyIdxs, gains = argmax|S|≤|U|fFL(S,U, θt)

probabilities = Softmax(gains)
St ∼sample(greedyIdxs, probabilities, k)
repeat

Compute batches Stb = ((xb, yb); b ∈ (1 · · ·B)) from St

for b = 1 to B do
if t ≥ W then

break

Compute mask mt on Stb

θt+1 = optimizer.step()
t = t + 1
if (t%R == 0) then

St+1 ∼sample(greedyIdxs, probabilities, k)

else
St+1 = St

until until t ≥ T
*** Evaluate trained model on validation set ***
eval = evaluate (θT ,V)
return eval, θT

Figure 1: Comparison of INGENIOUS with regular BERT pretraining at different stages of pretraining
on GLUE benchmark. It can be observed that pretraining on subsets selected through INGENIOUS
enables BERT to achieve better performance at intermediate pretraining checkpoints.
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Figure 2: Comparison of INGENIOUS with regular BERT pretraining at different stages on the CoLA
task. It can be observed that pretraining on subsets selected through INGENIOUS enables BERT to
achieve better performance at intermediate pretraining checkpoints indicating better convergence.
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