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Abstract

Knowledge distillation (KD) is one of the prominent techniques for model com-
pression. Although conventional KD is effective for matching the two networks
over the given data points, there is no guarantee that these models would match
in other areas for which we do not have enough training samples. In this work,
we address this problem by generating new auxiliary training samples based on
extracting knowledge from the backward pass and identifying the areas where the
student diverges greatly from the teacher. This is done by perturbing data samples
in the direction of the gradient of the difference between the student and the teacher.
We studied the effect of the proposed method on various tasks in different domains,
including images and NLP tasks with considerably smaller student networks. Our
experiments, show the proposed method got superior results over other baselines.

1 Introduction

During the last few years, we faced the emerge of a huge number of cumbersome state-of-the-art
deep neural network models in different fields of machine learning, including computer vision (Wong
et al., 2019; Howard et al., 2017), natural language processing (Prato et al., 2019; Jiao et al., 2019;
Lan et al., 2019; Brown et al., 2020) and speech processing (Bie et al., 2019; He et al., 2019).

Because of limited computational resources of edge devices, it is infeasible to deploying these large
models on them (Sun et al., 2020). On the other hand, considering users’ privacy concerns, network
reliability issues, and network delays increase the demand for offline machine learning solutions on
edge devices. Because of this demand we need to compress large neural networks.

Knowledge distillation (KD) (Hinton et al., 2015) is one of the most prominent compression tech-
niques in the literature. KD tries to transfer the learned knowledge from a large teacher network to a
small student. Original KD method transfers knowledge from a teacher to a student network only
by matching their forward pass outputs. Newer KD methods suggest other sources of knowledge
in the teacher network such as using intermediate layer feature maps (Sun et al., 2019, 2020; Jiao
et al., 2019), gradients of the network outputs w.r.t the inputs (Czarnecki et al., 2017; Srinivas and
Fleuret, 2018)), and matching decision boundaries for classification tasks (Heo et al., 2019). using
this additional information might be useful to get the student network performance closer to that of
the teacher.
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Figure 1: (a) Minimization Step: Using the teacher model knowledge for training the student in KD
(utilizing forward knowledge) (b) Maximization Step: Augmenting the input dataset x with auxiliary
data samples x′ which is generated by the back propagation of gradient through both networks
(utilizing backward knowledge)

In this work, we focus on identifying regions of the input space in which the teacher and student
functions diverges from each other. Our proposed iterative backward KD approach is comprised of:
first, a maximization step in which a new set of auxiliary training samples is generated by pushing
training samples towards maximum divergence regions of the two functions; second, a minimization
step in which the student network is trained using the regular KD approach over its training data
together with the generated auxiliary samples from the first step.

We show the success of our backward KD technique in improving KD on both classification and
regression tasks over the image and textual data.

2 Background: Knowledge Distillation

In the original KD, the process of transferring knowledge from a teacher to a student model is
accomplished by minimizing a loss function between the logits of student and teacher networks. This
loss function has been used in addition to the regular training loss function for the student network.
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where S(x) and T (x) are student and teacher networks respectively, and σ is the Softmax function.
τ is the temperature parameter and α is a coefficient between [0, 1]. This loss function is a convex
combination of two loss terms. These loss functions minimize the distance between the student
and both underlying and teacher functions. Since the teacher network is assumed to be a good
approximation of the underlying function, it should be close enough to the underlying function of
data samples. Fig. 2-(a) shows a simple example with three data points, an underlying function, a
trained teacher and a potential student function that satisfies the KD loss function in Equation 1.

However, the problem is that even though the student satisfies the KD objective function and intersects
the teacher function close to the training data samples, there is no guarantee that it would fit the
teacher network in other regions of the input space as well. In this work, we try to address this
problem by deploying the backward gradient information w.r.t the input (we refer to as backward
knowledge) in the two networks.
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Figure 2: Visualizing the data insufficiency issue for the original KD algorithm. (a) behaviour of the
teacher and the student function after training with KD loss. (b) divergence areas between the teacher
and the student networks. (c) behaviour of LBKD loss function between teacher and the student and
the idea of obtaining auxiliary data samples. For a better visualization, consider that LBKD is mean
square error here.

3 Methodology: Improving Knowledge Distillation using Backward Pass
Knowledge

3.1 Main Idea

In this section, we propose our improved KD method based on generating new out of sample points
around the areas of the input domain where the student output diverges greatly from the teacher. This
approach identifies the areas of the input space X around which the two functions have maximum
distance. Then we generate out of sample points X ′ ⊂ X from the existing training set X ⊂ X over
those regions. These new generated samples X ′ can be labelled by the teacher and then X ← X ∪X ′

be deployed in the KD’s training process to match the student better to the teacher over a broader
range in the input space (see Fig. 2). We show that augmenting the training set by adding this auxiliary
set improves the performance of KD significantly and leads to a closer match between the student and
teacher. Our improved KD approach follows a procedure similar to the minimax principle (Bratko
and Gams, 1982) : first, in the maximization step we generate auxiliary data samples; second, in the
minimization step we apply regular KD on the union of existing X and generated auxiliary data X ′.

To have a better understanding of how this can be cast as an instance of minimax estimator, assume
that we are given the data samples {xi, T (xi))}Ni=1. The goal is to estimate T (x) by S(x). We
may seek an estimator S(x) attaining the minimax principle. In minimax principle, where θ is an
estimand and δ is an estimator, we evaluate all estimators according to its maximum risk R(θ, δ). An
estimator δ0 , then, is said to be minimax if:

sup
θ

R(θ, δ0) = inf
δ∈C

sup
θ∈Θ

R(θ, δ) (2)

That is we chose the estimator for the situation that the worst divergence between θ and δ is smallest.
We follow a similar insight: i.e. the maximization step computes X ′, where there is the worst
divergence between the teacher and the student. The minimization step finds the weights of the
student network such that the difference between the student and teacher for this worst scenario is the
smallest.

min
w

max
x

R(Tx, Sx,w) (3)

In the main algorithm, we have two steps: maximization and minimization. The maximization step
generates auxiliary data samples by perturbing training data samples based on the gradient of the
backward KD loss LBKD which is a KL-divergence between the softmax outputs of teacher and
student models. The minimization step uses the original and generated samples to minimize the LKD

loss function (Equation 1) to train the student model. The detains of these two steps can be find in
appendix A.
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3.2 Backward KD for NLP Applications

It is not trivial how to deploy the introduced backward KD approach (i.e. calculating∇xLBKD for
discrete inputs) when data samples come from a discrete domain, such as NLP applications. To
adapt the proposed method for NLP models, instead of perturbing input samples, we perturbed the
embedding representations of the student and teacher models based on the gradient of LBKD loss.
Details of this method can be find in appendix B.

4 Experiments and Results

We designed five experiments to evaluate our proposed method.1 But because of the page limitation,
two of them are included here. Rest of the experiments can be found in appendix C section. Our
first experiment is about the CIFAR-10 classification task. We used resNet-26 as the teacher and
resNet-8 as student models. We trained the student network by using Backward KD method and
compared its results with baselines: training student from scratch, the original knowledge distillation,
‘FSP’ Yim et al. (2017), and BSS Heo et al. (2019) (which is a adversarial attach based augmentation
method). Also the performance of the combination of FSP+BSS has been reported. The results of
thse experiments can be found in table 1. Since it is not clear how to use the last two baselines for
text data, so we just used them for CIFAR-10 experiment. Table 1 compares the results of these
experiments.

The next experiment is designed based on General Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2018) and roBERTa family language models (Liu et al., 2019; Sanh et al.,
2019). In these experiments, we fine-tuned the distilroBERTa model based on the proposed method
by utilizing the fine-tuned roBERTa-large teacher for each of these tasks. Also, as our baselines, we
trained the student model from scratch as well as with original KD, FreeLBZhu et al. (2019), and
FreeLB+ original KD. Table 2 compares the results of these experiments. The results show that the
overall score of Backward-KD outperforms other baselines.

Table 1: Results of experiment on CIFAR10 dataset

Model method accuracy on test set
resNet-26 (teacher) from scratch 92.55%
resNet-8 (student) from scratch 86.02%
resNet-8 (student) original KD 86.66%
resNet-8 (student) FSP+KD 87.07%
resNet-8 (student) BSS 87.32%
resNet-8 (student) FSP+BSS 87.52%
resNet-8 (student) Backward KD 88.4%

Table 2: Results of experiment on GLUE tasks
Model (Network) ColA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI Score

roBERTa-large (Teacher) 68.1 96.4 91.9 92.3 91.5 90.2 94.6 86.3 56.3 85.28
DistilroBERTa (Student) 56.6 92.7 89.5 87.2 90.8 84.1 91.3 65.7 56.33 78.7

Student+FreeLB 58.1 93.1 90.1 88.8 90.9 84.0 91.0 67.8 56.33 80.01
Student+FreeLB+KD 58.1 93.2 90.5 88.6 91.2 83.7 90.8 68.2 56.33 80.06

Original KD 60.9 92.5 89.91 88.8 91.6 84.1 91.3 71.1 56.33 80.72
Our DistilroBERTa (Student) 62.9 93.1 90.3 89.1 91.5 85.1 91.6 71.9 56.33 81.31

5 Conclusion

In this paper, we have introduced the backward KD method and showed how we can use the backward
knowledge of teacher model to train the student model. Based on this method, we could easily locate
the diverge areas between teacher and student model in order to acquire auxiliary samples at those
areas with utilizing the gradient of the networks and use these samples in the training procedure of
the student model. We showed that our proposal can be efficiently applied to the KD procedure to
improve its performance. Also, we introduced an efficient way to apply backward KD on discrete

1We used PyTorch (https://pytorch.org/) framework (Paszke et al., 2019) for implementing all experiments and
Huggingface (https://huggingface.co/) framework (Wolf et al., 2019) in the implementations of NLP experiments.
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domain applications such as NLP tasks. In addition to the synthetic experiment which is performed
to visualize the mechanism of our method, we tested its performance on several image and NLP
tasks. Also, we examined the extremely small student and the few sample scenarios in two of
these experiments. We showed that the backward KD can improve the performance of the trained
student network in all of these practices. We believe that all auxiliary samples do not have the same
contribution to improving the performance of the student model. Also perturbing all data samples
can be computationally expensive in large datasets.
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Appendix

A Details of Minimization and Maximization Steps in the Proposed Method

In this section we try to explain the details of minimization and maximization steps of backward
KD method. The maximization step perturbs the input samples in a way to maximize the difference
between the student and teacher models. The minimization step trains the student weights to minimize
the KD loss function.

A.1 Maximization Step: Generating Auxiliary Data based on Backward-KD Loss

In the maximization step of our technique, we define a loss function (we refer to as the backward KD
loss or BKD throughout this paper) to measure the distance between the output of the teacher and the
student networks. This loss function can be Kullback Leibler divergence (KL-divergence) loss or
mean square error loss based on the type of problem (classification or regression) and should be same
as the loss in the minimization phase. Here, in this paper we use KL-divergence to demonstrate our
method.

LBKD = KL

(
σ
(T (x)

τ

)
, σ

(S(x)
τ

))
(4)

where σ(.) is the softmax function, KL(.) is the KL-divergence loss, and τ is the temperature
parameter. Here the main idea is that by taking the gradient of LBKD loss function in Equation 4
w.r.t the input samples, we can perturb the training samples along the directions of their gradients to
increase the loss between two networks. Using this process, we can generate new auxiliary training
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samples for which the student and the teacher networks are in maximum distance. To obtain these
auxiliary data samples, we can consider the following optimization problem.

x′ = max
x∈X
LBKD (5)

We can solve this problem using stochastic gradient ascent method. Therefore our perturbation
formula for each data sample will be:

xi+1 = xi + η ∇x LBKD (6)

where in this formula η is the perturbation rate. This is an iterative algorithm and i is the iteration
index. xi is a training sample at ith iteration. Each time, we perturb xi by adding a portion of
the gradient of loss to this sample. In general, if we continue the number of iterations until the
convergence, there can be a risk for generating out of distribution samples. To avoid this issue and
keep the distribution of generated auxiliary samples close to the distribution of original samples,
in practice we do the perturbation steps for a limited number of iterations. That is because the
data manifold is smooth (manifold assumption) and if we have limited number of data perturbation
epochs, the auxiliary samples will stay on a locally linear patch of the manifold. See section B in the
Appendix for more detail about this algorithm.

Fig. 2 demonstrates our idea using a simple example more clearly. Fig. 2-(a) shows a trained teacher
and student functions given the training samples (x1,y1), (x2,y2), (x3,y3). Fig. 2-(c) constructs the
LBKD between these two networks. LBKD shows where the two networks diverge in the original
space. Bear in mind that LBKD gives a scalar for each input. Hence, the gradient of LBKD with
respect to input variable x will be a vector with the same size as the variable x. Therefore, it does not
need to deal with the large dimensionality issue of the Jacobian matrix as described in (Czarnecki
et al., 2017). Fig. 2-(c) also illustrates an example of generating one auxiliary sample from the
training sample x2. If we apply Equation 6 to this sample, after several iterations, we will reach to a
new auxiliary data point (x′

2). It is evident in Fig. 2-(a) that, as expected, there is a large divergence
between the teacher and student networks in (x′

2) point.

A.2 Minimization Step: Improving KD with Generated Auxiliary Data

We can apply the maximization step to the given training data to generate their corresponding auxiliary
samples. Then by adding the auxiliary samples X ′ into the training dataset X ← X ′ ∪X , we can
train the student network again based on the original KD algorithm over the updated training set in
order to obtain a better output match between the student and teacher networks. Inspired by Mirzadeh
et al. (2019), we have used the following KD loss function in our work:

LKD = (1− λ) H
(
y, σ

(
S(x)

))
+ τ2 λ KL

(
σ
(T (x)

τ

)
, σ

(S(x)
τ

))
(7)

where σ(.) is the softmax function, H(.) is the cross-entropy loss function, KL(.) is the Kullback
Leibler divergence, λ is a hyper parameter, τ is the temperature parameter, and y is the true labels.

The intuition behind expecting to get a better KD performance using the updated training data is as
follows. Now given the auxiliary data samples which point toward the regions of the input space
where the student and teacher have maximum divergence, these regions of input space are not dark
for the original KD algorithm anymore. Therefore, it is expected from the KD algorithm to be able
to match the student to the teacher network over a larger input space (see Fig. 4). Moreover, it is
worth mentioning that the maximization and minimization steps can be taken multiple times. In this
regard, for each maximization step, we need to construct the auxiliary set X ′ from scratch and we
do not need the previously generated auxiliary sets. However, in our few-sample training scenarios
where the number of data samples is small, we can keep the auxiliary samples. The maximization
steps happen along with the regular KD training. For a better explanation, suppose regular KD needs
n = e× (h+ 2) epochs to train the student network. First we perform the minimization step for e
epochs. Then, after each minimization step, we perform the maximization step h time in order to
generate the auxiliary samples, and enrich the training dataset to achieve a better match between
the teacher and student models. These steps happen h times in the algorithm. Also, to pay more
attention to the original data samples rather than the auxiliary data samples, at the end of the training,
we fine-tune the student model with only the original data samples for e epochs.
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Figure 3: General procedure of utilizing auxiliary samples in NLP models. Here x is the one-hot
vector of input tokens, W is the embedding matrix, and z is the embedding vector of x.

B Backward KD for NLP Applications

It is not trivial how to deploy the introduced backward KD approach (i.e. calculating∇xLBKD for
discrete inputs) when data samples come from a discrete domain, such as NLP applications. Here,
we propose a solution to how this technique can be adapted for the NLP domain. For neural NLP
models, first, we pass the one-hot vectors of the input tokens to the so-called embedding layer of
neural networks. Then, these one-hot vectors are converted into embedding vectors (see Fig. 3). The
key for our solution is that embedding vectors of input tokens are not discrete and we can take the
gradient of loss function w.r.t the embedding vectors z. But the problem is that, in the KD algorithm,
we have two networks with different embedding sizes (see Fig. 3). To address this issue, we can take
the gradient of the loss function w.r.t one of the embedding vectors (here student embedding vector
zS). However, then we need a transformation matrix like Q to be able to derive the corresponding
embedding vector zT for the teacher network form zS .

zT = QzS (8)

We can show that the transform matrix Q is equal to the following equation:

Q = WTW
T
S (WSW

T
S )−1 (9)

where in this equation WT
S (WSW

T
S )−1 is the pseudo inverse of WS embedding matrix. We refer

you to the Appendix to see the proof of this derivation. Therefore, to obtain the auxiliary samples,
we can take the gradient of the LBKD loss function w.r.t the student embedding vector zS . Then by
using Equations 10 and 9, we can re-construct zT during the steps of data perturbation as following.

zi+1
S = ziS + η∇zSLBKD (10)

zi+1
T = WTW

T
S (WSW

T
S )−1zi+1

S (11)

C More Experiments

C.1 Synthetic Data Experiment

For visualizing our technique and showing the intuition behind it, we designed a very simple
experiment to show how the proposed method works over a synthetic setting. In this experiment, we
consider a polynomial function of degree 20 as the trained teacher function. Then, we considered
8 data points on its surface as our data samples to train a student network which is a polynomial
function from degree 15 (see Fig. 4-(a)). As it is depicted in this figure, although the student model
perfectly fits the given data points, it diverges from the teacher model in some areas between the
given points. After applying the backward KD method, we can generate some auxiliary samples in
the diverged areas between the teacher and student models in Fig. 4-(b). Then, we augmented the
training data samples with the generated auxiliary samples and trained the student model based on
this new augmented dataset. The resulting student model has achieved a much better fit on the teacher
model as it is evident in Fig. 4-(c).
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Figure 4: Visualizing the generation of auxiliary samples and their utilization in training the student
model.

C.2 MNIST classification:

In this experiment, one of our goals was testing the performance of the proposed method in the
scenario of extremely small student networks. Because of that, we considered two fully connected
neural networks as student and teacher networks for the MNIST dataset classification task. The
teacher network consists of only one hidden layer with 800 neurons which leads in 636010 trainable
parameters. The student network was an extremely simplified version of the same network with
only 5 neurons in the hidden layer. This network has only 3985 trainable parameters, which is 160x
smaller than the teacher network. The student network is trained in three different ways: a) from
scratch with only training data, b) based on the original KD approach with training data samples
augmented by random noise, and c) based on the proposed method. As it is illustrated in table 1,
the student network which is trained by using the proposed method achieves much better results in
comparison with two other trained networks.

Table 3: Results of experiment on the MNIST dataset

Model method #parameters accuracy on test set
teacher from scratch 636010 98.14
student from scratch 3985 87.62
student original KD 3985 88.04
student proposed method 3985 91.45

C.3 GLUE tasks with few sample points

In this experiment, we modified the experiment in section 6.3 of paper slightly to investigate the
performance of the proposed method in the few data sample scenario. Here we randomly select a
small portion of samples in each data set and fine-tuned the distilroBERTa based on these samples.
For CoLA, MRPC, STS-B, QNLI, RTE, and WNLI, 10% of data samples and for SST-2, QQP, and
MNLI 5% of them in the dataset are used for fine-tuning the student model.

Table 4: Results of few sample experiment on GLUE tasks
Model (Network) ColA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI Score

roBERTa-large (Teacher) 60.56 96.33 89.95 91.75 91.01 89.11 93.08 79.06 56.33 85.82
DistilroBERTa (Student) 43.82 91.05 76.96 81.51 84.92 75.88 83.94 52.07 56.33 71.90

Our DistilroBERTa (Student) 44.11 91.74 77.20 82.82 85.32 76.75 84.34 56.31 56.33 72.76

D Algorithms

This section explains the details of the proposed algorithm. First, we will see the general procedure
of the algorithm. Then in section A.1, the pseudo-code of the algorithm will be explained; and finally,
in section A.2, we will see the modified version of the algorithm for NLP tasks. If we consider for
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training the student model, vanilla KD needs n epochs, here the idea is dividing these epochs into
h+ 2 sections where each section consists of e epochs (n = (h+ 2)e) Then we have:

Pre-training Step (e epochs): We train the student network based on the original KD procedure for
(e epochs). In this step, the student network will get close to the teacher network around the given
training samples and will diverge from the teacher in some other areas.

Iterative Min Max Steps (h× e epochs): We do the following two steps iteratively h times:
1) Using the partially trained student network and the trained teacher network, we use the proposed
maximization step in A.2 for generating an auxiliary dataset.
2) Combine the auxiliary data with the training dataset and train the student network based on the
augmented dataset using the original KD procedure for e epochs.

Fine-tuning Step (e epochs): Finally, fine-tune the student network using original KD only based on
the train samples for e epochs to pay more attention to the original data samples.

D.1 Algorithm 1 (general pseudo-code)

Algorithm 1 explains the details of the proposed method in previous section and section 3 of the
paper.We pass the student network S(.), the teacher network T (.), the input dataset X , the number of
training epochs e, the number of maximization steps h, and the number of sample perturbing steps l
to the proposed KD function. This algorithm assumes that the teacher network T (.) has been trained,
and will be used to train the student network S(.). Also, we assume X ′ is the set of the augmented
data samples. We first initialize X ′ with data set X in line 3 of the algorithm. The basic idea is that
each time we train the student network using the Vanilla-KD function for a few training epochs e in
the outer loop of line 4. Then, in line 6 first, we re-initialize X ′ with dataset X , and in lines 7 to 11,
we perturb data samples in X ′ using the gradient of the loss between teacher and student iteratively
to generate new auxiliary samples. In line 12, we replace X with the union of X and X ′ sets. In
the next iteration of the loop in line 4, the Vanilla-KD function will be fed with the augmented data
samples X ′. Note that just in the first iteration, Vanilla-KD function is fed with the original data set
X which is identical to pre-training step of the previous section.

Algorithm 1
1: function PROPOSED-KD(S,T ,X , e, h, l)
2: X ′ ← X
3: for i = 1 to h+ 1 do
4: VANILLA-KD(S,T ,X ′,e)
5: X ′ ← X
6: for x′ in X ′ do
7: for j = 1 to l do
8: x′ ← x′ + η∇x||S(x′)− T (x′)||22
9: end for

10: end for
11: X ′ ← X ′ ∪X
12: end for
13: VANILLA-KD(S,T ,X ,e)
14: return S
15: end function
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D.2 Algorithm 2 (NLP task’s version)

Algorithm 2 explains how to apply the proposed method in NLP tasks. This algorithm is almost
similar to algorithm 1. The only main difference is in the way we feed the networks. Here instead of
considering the one-hot index vectors of tokens in the text documents, we consider the embedding
vectors zS and zT of the input vector x (see lines 5 and 6 in the algorithm). Then we feed each of the
teacher and the student networks separately using their own embedding vectors. In line 16, we use the
transform method proposed in section 3.2 of the paper to transform student’s perturbed embedding
vectors into teacher’s embedding vectors.

Algorithm 2
1: function PROPOSED-KD(S,T ,X , e, h, l)
2: WT ← EMBEDDING-MATRIX(T )
3: WS ← EMBEDDING-MATRIX(S)
4: ZT ←WTX
5: ZS ←WSX
6: Z ′

T ← ZT

7: Z ′
S ← ZS

8: for i = 1 to h+ 1 do
9: VANILLA-KD(S,T ,Z ′

T , Z ′
S ,e)

10: Z ′
T ← ZT

11: Z ′
S ← ZS

12: for (z′S , z′T ) in (Z ′
S, Z ′

T ) do
13: for j = 1 to l do
14: z′S ← z′S + η∇zS ||S(z′S)− T (z′S)||22
15: z′T ←WTWS(WSW

T
S )−1z′S

16: end for
17: end for
18: Z ′

S ← Z ′
S ∪ ZS

19: Z ′
T ← Z ′

T ∪ ZT

20: end for
21: VANILLA-KD(S,T ,ZT , ZS ,e)
22: return S
23: end function

11
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