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Abstract

Knowledge graph completion (KGC), the task that aims at predicting missing infor-1

mation based on the already existing relational data inside a knowledge graph(KG),2

has drawn significant attention in the recent years. However, predictive power3

of KGC methods is often limited by the completeness of the existing knowledge4

graphs. In monolingual and multilingual settings, KGs from different sources5

and languages are potentially complementary to each other. In this paper, we6

study the problem of multi-KG completion, where we focus on maximizing the7

collective knowledge from different KGs to alleviate the incompleteness on indi-8

vidual KGs. Specifically, we propose a novel method called CKGC-MKD that9

uses augmented CompGCN-based encoder models on both individual KGs and10

a large fused KG in which seed alignments between KGs are regarded as edges11

for message propagation. Additional mutual knowledge distillation are employed12

to maximize the knowledge transfer between the models of “global” fused KG13

and the “local” individual KGs. Experimental results on multilingual datasets has14

shown that our method outperforms all state-of-the-art models.15

1 Introduction16

Knowledge graphs (KGs) have been widely adopted in many industry applications because they17

capture the multi-relational nature between real-world entities well. KGC, along with many other18

KG-based applications, are usually based on knowledge representation learning (KRL), in which19

entities and relations in a KG are encoded into low-dimensional vectors. With recent advances in20

Graph Neural Network(GNN) (Scarselli et al., 2009), many recently published methods like R-GCN21

(Schlichtkrull et al., 2018) and CompGCN (Vashishth et al., 2020) all employed an encoder-decoder22

mechanism to tackle the KGC problem: variations of Graph Convolutional Networks (GCN) (Kipf23

and Welling, 2017) are used as encoders to generate embeddings for entities and relations in a24

KG, and traditional KG embedding methods like TransE (Bordes et al., 2013) and DistMult (Yang25

et al., 2015) are used as decoders for the KGC task. With the additional message propagation and26

aggregation mechanism of graph convolution in the encoding stage, these methods have shown more27

promising results on the KGC task comparing to the traditional knowledge graph embedding methods.28

However, even with better encoding mechanism of GCNs, expressiveness and quality of trained29

models can still be limited by the sparseness of the individual KG the model is trained on. At the30

same time, real-world entities are usually captured in more than one KGs from either different sources31

or different languages. The common entities in the disjoint real-world KGs can potentially serve32

as bridges to better connect them and transfer additional knowledge to one another to alleviate the33

sparseness problem faced by almost all of the real-world KGs. The common entities across different34

KGs are known as seed alignments, which usually originates from the manual annotation of human35

annotators. Because of the scale and size of KGs, seed alignments are usually relatively scarce.36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



In this paper, we focus on the multi-KG completion problem, where we aim to collectively utilize37

multiple KGs and seed alignments between them to maximize the the KGC task performance on each38

individual KG. Concretely, we propose a novel method that concurrently trains CompGCN-based39

encoders on each individual KGs as well as a fused KG where seed alignments are regarded as40

edges for connecting KGs together and for augmented message propagation for “knowledge transfer”.41

During the concurrent training, we also employ the mutual knowledge distillation mechanism, in42

which CompGCN-based encoders on individual KGs and the fused KG are trained to learn potentially43

complementary features from each other. The intuition behind the mutual knowledge distillation44

process is that the small encoders trained on individual KGs capture local semantic relationships45

better, while the large encoder trained on the large fused KG captures the global semantic relationships46

better because of the intra-KG message propagation. In the mutual knowledge distillation process, the47

small and large encoders take turns to become “teacher” in the knowledge distillation, to encourage48

mutual knowledge transfer between them. Lastly, we use ensemble to combine the predictions from49

the individual KG and fused KG to produce the KGC predictions on test set for each individual KG.50

The main contribution of this paper can be summarized as follows: 1) we propose a novel augmented51

CompGCN encoder to facilitate intra-KG knowledge transfer and tackle the multi-KG completion52

task; 2) we propose a novel mutual knowledge distillation mechanism to encourage collaborative53

knowledge transfer between the models trained on individual KGs and globally fused KG. Exper-54

imental results on popular multilingual datasets show that our proposed method outperforms all55

of the state-of-the-art models. Extensive ablation studies are conducted on both monolingual and56

multilingual datasets to demonstrate the contribution of each component in the proposed method.57

2 Methods58

2.1 Preliminaries59

The framework of multi-KG completion task involves two or more KGs. Without loss of generality,60

we assume there are a total of m KGs in the problem setting. We formalize the i-th heterogeneous61

KG in the task as KGi = {Ei, Ri, Ti}, where Ei, Ri, Ti respectively represent the entity set, relation62

set, and fact triple set of KGi. A small set of seed alignments between KGs, known before training,63

is denoted by SKGi,KGj = {(ei,∼, ej) : (ei, ej) ∈ Ei × Ej}, where ∼ denotes the equivalence64

relation. The full set of seed alignments can then be denoted by Salign = ∪mi=1∪mj=i+1SKGi,KGj . We65

can then formalize the large fused KG connected by seed alignments as KGf = {Ef , Rf , Tf |Ef =66

∪mi=1Ei, Rf = ∪mi=1Ri, Tf = (∪mi=1Ti) ∪ Salign}. Let Mi and Mf denote the encoder models for67

the i-th individual KG and the fused KG respectively.68

2.2 Augmented CompGCN Message Propagation69

We decide to use CompGCN (Vashishth et al., 2020) as our encoders for the knowledge graph70

embeddings. In the method, CompGCN encoders are trained on each individual KGs and the fused71

KG concurrently. The update equation of CompGCN node embeddings can be written as:72

ht
v = f(Σ(u,r)∈N(v)Me(u, r)), (1)

73

Me(u, r) = Wλ(r)ϕ(h
t−1
u , ht−1

r ), (2)

where ht
v denotes the updated embedding for node v at t-th layer, N(v) denotes the set of neighboring74

entities and relations of node v, ht−1
u and ht−1

r denotes the embeddings for node u and relation r at75

(t-1)-th layer respectively, ϕ denotes the non-parametric composition operation and Wλ(r) denotes76

the direction specific transformation matrix where λ denotes the direction of relation. In our method,77

the vanilla CompGCN encoder is used without modification on individual KGs, while we decide to78

use an augmented CompGCN encoder for better knowledge transfer on the fused KGf . Specifically,79

although seed alignments are viewed as relations in the fused KG, we remove the composition80

operator for message propagation between the KGs and instead use the standard non-relation-specific81

message passing. The augmented message function in the fused KG can then be written as:82

Me(u, r) =

{
Walignh

t−1
u , if(u,∼, v) ∈ Salign

Wλ(r)ϕ(h
t−1
u , ht−1

r ), otherwise
(3)
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where Walign denotes the transformation matrix for seed alignments. The composition operation is83

removed because we view the cross-KG equivalence as a different type of bi-directional relationship84

comparing to the triples inside KGs. Additionally, many existing methods (Wang et al., 2021; Singh85

et al., 2021) use a loss regularization to ensure the equivalent entities in each KG to have similar86

embeddings with or without transformation. However, instead of imposing the regularization directly87

on the training loss term, we impose a softer regularization in the message passing augmentation,88

where the contextualized node embeddings of entities in each knowledge graph are passed to their89

counterparts in other KGs during encoding. As a result, contextualized embedding of entities in each90

KG can be shared across the KGs by the augmented message propagation in the encoding phase, and91

optimized during the training of KGC task on fact triples.92

The encoded entity and relation embeddings are then passed to the decoder, which performs the link93

prediction task on triples in KG, and computes the knowledge representation loss. The margin-based94

knowledge representation loss can be written as:95

LT = Σti∈Ti,t′i∈T ′
i
f(ti)− f(t′i) + γ, (4)

where T ′
i denotes the negative samples created from corrupting head or tail entity in triple ti; f(ti)96

denotes the scoring function of traditional knowledge embedding model; and γ denotes the margin, a97

hyperparameter describing the ideal distance between the positive triples and negative triples.98

2.3 Mutual Knowledge Distillation99

We employ the mutual knowledge distillation mechanism between each model on individual KGs Mi100

and the model on the fused KG Mf . At each training step, each Mi pair with Mf to conduct mutual101

knowledge distillation, where Mi and Mf learns simultaneously from each other via a mimicry loss102

that measures the difference between the posterior predictions of each other on KGC task on triples103

Ti in the corresponding KGi. Three different KGC tasks are used for mutual knowledge distillation:104

for a triple (s, r, o), the task is to predict the missing component given the other two in the triple, i.e.,105

head prediction, tail prediction and relation prediction. The distillation loss can be written as:106

Li
D =

∑
(si,ri,oi)∈Ti

∑
β∈Task

DKL(P
β
i (si, ri, oi), P

β
f (si, ri, oi)), (5)

where Task denotes the three KGC tasks, DKL denotes the Kullback Leibler (KL) Divergence, and107

P denotes the categorical distribution predicted by the knowledge graph embedding scoring function108

on task β. As an example, for tail prediction, the categorical distribution can be written as softmax109

of tail prediction across all candidates: Pi(si, ri, oi) =
exp(f(Mi(si),Mi(ri),Mi(oi)))∑

oj∈Ei
exp(f(Mi(si),Mi(ri),Mi(oj)))

, where110

Mi() denotes the embedding look up operation for entities and relations from the output of encoder111

model Mi. In practice, predicting across all candidates Ei and comparing the categorical distribution112

across all entities can be inefficient due the the size of KG. Therefore, we employ the top-k sampling113

technique used in the work of Sourty et al. (2020) to use the “teacher” model to select top-k most114

confident candidates for the categorical distribution comparison.115

2.4 Training and ensemble prediction116

The overall loss term combines the knowledge representation and mutual knowledge distillation loss:117

L = LT + αLD, where α is a hyperparameter controlling the trade-off between two loss terms in118

the overall loss term. The models Mi and Mf are trained concurrently on KGC tasks while learning119

from the best-performing model of each other via the mutual distillation process. In practice, for120

better convergence and faster training, the training process is separated into two stages. In the first121

stage, both individual models and the fused model are trained independently with only knowledge122

representation loss; while in the second stage, knowledge distillation losses are introduced so that123

models can mutually learn from each other.124

In the end, the output for KGC tasks are generated by combining predictions from models Mi125

and Mf using ensemble. Concretely, the for triple ti ∈ Ti, the final scoring function becomes:126

f(Mi(ti)) + f(Mf (ti)). The ensemble scores are then used for further ranking and evaluation.127
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Table 1: Results on DBP-5L dataset.
EL JA ES FR EN

H@1/H@10/MRR H@1/H@10/MRR H@1/H@10/MRR H@1/H@10/MRR H@1/H@10/MRR
KenS 28.1 / 56.9 / - 32.1 / 65.3 / - 23.6 / 60.1 / - 25.5 / 62.9 / - 15.1 / 39.8 / -
CG-MuA 21.5 / 44.8 / 32.8 27.3 / 61.1 / 40.1 22.3 / 55.4 / 34.3 24.2 / 57.1 / 36.1 13.1 / 33.5 / 22.2
AlignKGC 27.6 / 56.3 / 33.8 31.6 / 64.3 / 41.6 24.2 / 60.9 / 35.1 24.1 / 62.3 / 37.4 15.5 / 39.2 / 22.3
SS-AGA 30.8 / 58.6 / 35.3 34.6 / 66.9 / 42.9 25.5 / 61.9 / 36.6 27.1 / 65.5 / 38.4 16.3 / 41.3 / 23.1
KGC-I 28.9 / 66.8 / 41.6 30.3 / 61.7 / 41.4 24.8 / 61.2 / 37.5 25.8 / 64.1 / 39.1 20.5 / 58.6 / 33.5
KGC-A 40.4 / 85.3 / 55.3 38.7 / 80.4 / 52.5 31.5 / 75.3 / 46.3 34.3 / 78.9 / 49.3 24.4 / 65.5 / 38.2
CKGC-MKD 45.1 / 86.0 / 59.8 43.6 / 82.1 / 57.0 34.8 / 75.9 / 49.3 38.1 / 78.1 / 52.3 27.8 / 66.4 / 41.3

3 Experiments128

3.1 Basic settings129

We perform experiments and compare the performance of proposed CKGC-MKD method with the130

state-of-the-art models on the existing multilingual dataset DBP-5L (Chen et al., 2020). The dataset131

contains five KGs from different languages: English (EN), French (FR), Spanish (ES), Japanese132

(JA) and Greek (EL). In this work, we follow the evaluation scheme of previous works (Chen et al.,133

2020; Singh et al., 2021; Huang et al., 2022): for a test triple (h, r, t), rank all possible answers134

to tail prediction query (h, r, ?); and apply the MRR(mean reciprocal ranks), Hit@1 and Hit@10135

metrics under filtered settings (Wang et al., 2014; Yang et al., 2015) to evaluate the performance.136

The reported CKGC-MKD uses 1-layer encoder, with TransE as knowledge embedding decoder and137

embedding dimension of 100. However, CKGC-MKD can be easily extended to use other decoders.138

3.2 Results139

In table 1 we present the experiment results on the DBP-5L dataset 1. In the table, performances140

of two extra baseline models are reported: KGC-I refers to the standard CompGCN encoder model141

trained on individual KG, KGC-A refers to the augmented message propagation encoder trained on142

the fused KG. It can be observed that the proposed CKGC-MKD method outperforms all baseline and143

state-of-the-art models on the DBP-5L dataset. Comparing to the previous models, the individually144

trained KGC-I model on each language can already achieve similar performance on most of the145

languages, which indicates the effectiveness of the CompGCN encoder. The KGC-A model trained146

on the fused KG provided a large margin over the KGC-I and the previous models. This implies that147

the inclusion of multiple KGs truly helps the KGC task of each other and also verifies the benefit148

of the augmented cross-KG message propagation. In the end, with mutual knowledge distillation149

between KGC-I and KGC-A enabled, the CKGC-MKD model use the ensemble predictions from150

both distilled models. This achieves the best performances in the table across almost all of the metrics.151

Complexity wise, additional cross-KG connections in KGC-A model introduced approximately 25%152

more additions in the message propagation of the encoders. Most of the additional complexities153

in the proposed method are introduced in the mutual knowledge distillation, in which two more154

forward passes are required on each individual model while the distillation loss terms also add extra155

computation complexities during training. At the cost of extra complexity, the proposed model156

achieves state-of-the-art performances on the multilingual dataset and demonstrated benefits of157

incorporating knowledge distillation.158

4 Conclusions159

In this paper, we proposed a novel method CKGC-MKD that focuses on the KGC task across160

multiple KGs. The proposed method uses an augmented CompGCN encoder for message propagation161

across different KGs via seed alignments in a fused KG. Additional mutual knowledge distillations162

between individual KGs and the fused KG are employed by the proposed model to maximize163

knowledge transfer. CKGC-MKD beats the state-of-the-art models by a significant margin on KGC164

1We directly report the benchmarking results from the work of Huang et al. (2022) for the first four rows in
the table. For fairness of comparison, results we report in the table all adopted the filtered setting by Huang et al.
(2022) instead of the traditional setting: Huang et al. (2022) assumes the candidate space during testing excludes
all positive triples from training set, while traditional filtered setting also excludes validation and test set.
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task on multilingual dataset DBP-5L. We also demonstrate the performance gains provided by each165

component of the proposed method. Further experiments have been planned to extend CKGC-MKD166

method to 1) include a fine-tuning stage for the low-resource KG in extreme cases and 2) include167

probabilistic seed alignments predicted by algorithms. We believe the planned works would greatly168

enhance the generalizability of our proposed model to tackle more real-world datasets.169
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A Related work234

A.1 Knowledge graph embeddings235

The research on knowledge graph embeddings has gained significant attention in the recent years. The236

goal of this task is to encode entities and relations of a KG into low-dimensional vectors. Traditional237

translation-based methods like TransE (Bordes et al., 2013), TransH (Wang et al., 2014), TransR238

(Lin et al., 2015), as well as the semantic matching models like RESCAL (Nickel et al., 2011) and239

DistMult (Yang et al., 2015), all achieved promising results on the KGC task. Another stream of240

recent works (Schlichtkrull et al., 2018; Vashishth et al., 2020; Yu et al., 2021) all employed the241

graph structure to propagate information between adjacent entities and encode them into embeddings.242

Specifically, variants of GCN model are used as encoder to embed entity and relations into vectors,243

and traditional knowledge graph embedding methods like TransE are then used as decoders for KGC244

task.245

A.2 KGC across multiple Knowledge graphs246

Comparing to KGC on single KG, KGC across multiple KGs is a relatively under-explored area.247

Wang et al. (2021) proposed ATransN, an adversarial embedding transfer network which aims to248

facilitate the knowledge transfer from a pre-trained embedding of a teacher KG to a student KG with249

a set of seed alignments. Chen et al. (2020) was the first to propose multilingual KGC problem setting250

and tackled the problem from a model ensemble perspective. On the same multilingual problem251

setting, Singh et al. (2021) proposed AlignKGC to jointly trains KGC, entity alignment and relation252

alignment tasks. Huang et al. (2022) proposed SS-AGA, which models seed alignment as edges to253

fuse multiple knowledge graphs, while using a generator model to dynamically capture more potential254

alignments between entities and iteratively add more edges to the graph. Additionally, Sourty et al.255

(2020) proposed KD-MKB, which assumes the existence of both shared relations and shared entities256

across individual KGs, and therefore tackles multi-KG completion task from a knowledge distillation257

perspective.258

B Ablation study259

In table 2, we report the results of our ablation studies to analyze how each of the components in the260

proposed method affect the results. We choose to report the ablation study results on the multilingual261
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Table 2: Ablation study results on DBP-5L and D-W-15K-LP.

DBP-5L D-W-15K-LP
Metric EL JA ES FR EN DBpedia Wikidata

KGC-I
H@1
H@10
MRR

22.0
49.1
31.3

23.1
44.7
30.7

19.0
44.1
27.9

21.1
45.3
29.5

17.2
45.5
26.9

29.9
54.2
38.4

25.5
49.2
34.2

KGC-C
H@1
H@10
MRR

31.6
66.3
43.3

29.6
61.4
40.3

24.3
54.7
34.6

25.9
58.1
36.7

19.2
50.3
29.5

29.9
55.3
38.8

26.8
50.4
35.4

KGC-A
H@1
H@10
MRR

32.4
67.6
44.1

30.9
62.7
41.6

25.6
56.9
36.3

27.0
59.5
37.9

20.3
52.5
31.0

30.7
55.6
39.3

27.5
50.8
35.8

KGC-I-D
H@1
H@10
MRR

32.3
63.0
43.0

30.6
57.4
40.1

24.5
52.8
34.4

25.5
52.7
35.1

20.3
49.1
30.2

31.2
54.9
39.4

29.2
49.8
36.5

KGC-A-D
H@1
H@10
MRR

35.7
67.6
46.8

33.3
63.3
43.6

27.7
57.9
38.0

28.4
58.7
38.8

22.3
53.2
32.7

31.7
55.8
40.0

29.2
50.7
36.9

CKGC-MKD
H@1
H@10
MRR

37.5
68.6
48.3

34.8
64.1
45.0

28.2
57.8
38.5

29.3
58.3
39.5

22.4
52.7
32.8

31.7
55.8
40.0

29.5
50.6
37.1

DBP-5L dataset as well as a monolingual self-generated D-W-15K-LP dataset. D-W-15K-LP is a262

dataset generated from the entity alignment benchmarking datasets D-W-15K (Sun et al., 2020). To263

mimic a more real-life setting, we employed the sampling strategy proposed in the work of Sun264

et al. (2021), to create dangling entities (entities without alignment across KGs) in the KGs. In the265

sampling process, by removing part of the alignments from KGs, triples containing removed entities266

are also excluded. This results in a more sparse dataset with dangling entities in each individual KG.267

In addition to the KGC-I and the KGC-A models reported in the section 3, we additionally report268

the performance of several ablation models: KGC-C refers to the ablation model trained on fused269

KG without augmented message propagation, KGC-I-D and KGC-A-D respectively represent the270

ablation models with mutual distillation enabled for KGC-I and KGC-A. Therefore, the reported271

CKGC-MKD is the ensemble results of KGC-A-D and KGC-I-D. For a more complete and universal272

comparison, in the ablation study we use the traditional “link prediction” task that includes both head273

prediction and tail prediction with the traditional filtered setting used in the works of Wang et al.274

(2014) and Yang et al. (2015).275

On both datasets we can observe a clear margin that KGC-A model created over the KGC-C model,276

which verifies the effectiveness of augmented message propagation. Additionally, on both datasets the277

distillation enabled KGC-I-D and KGC-A-D models have shown superior performance in almost all278

metrics over the KGC-I and KGC-A model respectively. This has shown that the mutual knowledge279

distillation process is beneficial for both individual models and the fused model. Lastly, CKGC-MKD280

achieves the best performances in most of the metrics, which verifies the gains provided by the281

ensemble technique. An interesting observation is that even after the mutual knowledge distillation,282

the KGC-I-D models still performs slightly worse than the fused model KGC-A-D; and the difference283

in performance also varies across different KG. One of the possible reason behind this observation284

is that we used a constant α for all KGs in one dataset to control the trade-off between knowledge285

distillation loss and knowledge representation loss. Limited by the hardware resources, we did not286

explore possibilities of assigning different α for each KG, and decided to leave that for the future287

work that possibly explores a fine-tuning stage of the model to better reconcile the difference and288

imbalance of resource in each of the KG.289
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Algorithm 1 Pseudocode of the training process of CKGC-MKD.
▷ Stage 1: trains each model Mi and Mf with only knowledge representation loss.
for i ∈ 1..m+ 1 do

while Mi not converged do
Li ← Ti

Mi ← Update w.r.t Li

end while
end for
▷ Stage 2: trains each model Mi and Mf with knowledge representation loss and knowledge
distillation loss.
while not converged do

batchf ← sample from triple set Tf

Lf
T ← calculate loss of batchf base on equation 4

for i ∈ 1..m do
batchi ← sample from triple set Ti

Li
T ← calculate loss of batchi base on equation 4

Li
D, Lf

D ← calculate distillation losses between Mi and Mf on batchi base on equation 5
with top-k sampling to select candidates space of distillation

Li ← Li
T + αLi

D

Lf ← Lf
T + αLf

D

Mi ← Update w.r.t Li

end for
Mf ← Update w.r.t Lf

end while

Figure 1: An illustrative figure of the proposed CKGC-MKD with 2 KGs.
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